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Abstract—This paper describes the MITRE eCTF 2024 com-
petition and details as well as the Yellow Hackets team’s
implementation and security methods used to meet the various
requirements of the competition.

I. INTRODUCTION

The team’s main tasks for the MITRE eCTF challenge are
to construct a cryptographically secure infrastructure for an
embedded system (specifically a medical device system) and
to attack a system that has been secured by another team.

The medical system, which is referred to as the Medical
Infrastructure Supply Chain (MISC) System, consists of 3
MAX78000FTHR boards welded onto a printed circuit board,
one board acting as the Application Processor (AP) which
communicates with the host computer, and two Component
boards that represent the various components of medical
equipment the system may be applied to.

Fig. 1. This is the MISC board when it is fully set up. One board (here, the
middle board) is labeled to be the application processor. It connects to the
host computer via cable. It communicates to the component boards by I2C.
Finally, there are reset/flash buttons that can be used to load new firmware
onto the board (in the updating process).

These systems can be flashed with the team’s own firmware
implementation. This process is known as “updating” the
firmware. Though all competitors are given a reference
firmware [1] that fulfills the functional requirements of the

MISC system (i.e., the ability to boot, the ability for a
component to be replaced, the ability for a component to
be attested (queried for personal data), the ability for the
application processor to list components, and the ability to
send messages between the boards via I2C), the team’s task
as the defenders is to secure the system so that attackers cannot
take control of the system. In particular, the team has 5 security
requirements to fulfill:

1) The AP should only boot when its components are all
present and valid.

2) The component should only boot with a valid AP.
3) The attestation pin and replacement token (secrets that

are needed to perform attestation and replacement re-
spectively).

4) The attestation data (data obtained from a component
via attestation) should be confidential.

5) The AP and components should be able to communicate
with each other with integrity and authenticity.

The team can access these boards via the host com-
puter (basically any system connected to the boards). Using
the shell scripts they provided us (e.g., ectf_update,
ectf_attestation, ectf_replace), which allows the
team to command the devices and test the functional require-
ments.

The team was also tasked with attacking other competitors’
designs. However, due to issues surrounding the completion of
the team’s design (particularly with security requirement 4),
the team never reached this phase and unfortunately did not
have the chance to attack other designs.

II. PROTECTION AND SECURITY DETAILS

In order to finish the security requirements efficiently, each
security task was divided amongst the members of the team.
For many of the goals, the team utilized the WolfSSL library
[3] to write the implementations for many of the cryptographic
procedures required to secure the system.



A. The Application Processor (AP) should only boot if all
expected Components are present and valid. Components
should only boot after being commanded to by a valid AP
that has confirmed the integrity of the device.

Levi Doyle and Alan Zheng primarily worked on these
security requirements.

1) Initial Implementation: To verify each component is
valid, the deployment generates a SHA-256 hash for a part
of the components’ firmware and stores that data in the AP.

SHA-256 is a hashing algorithm that is very secure due to
the fact that it is near impossible to reverse the input from the
output. The algorithm takes the original message, a salt, and
padding for security. MD5, another hashing algorithm, is not
very secure since it’s very easy to generate hash collisions.
This makes tampering simple, which is why the team elected
to use the SHA-256 instead of MD5 to hash the application
processor and component files.

During boot, the AP recomputes the hash of the com-
ponent’s firmware, and check if it matches the AP’s stored
hash. If they match, the components are verified and the boot
proceeds. If they do not match, the component firmware was
tampered or compromised and the AP rejects the boot.

Similarly to how the AP validates the components, the
components will also use a stored hash to validate the AP.
A SHA-256 hash of the AP’s firmware is generated and saved
to a separate file, as simply inserting it into comparison code
is impossible due to creating an infinite cycle of needing to
update the AP and components’ hashes due to each others
hashing changing. This is done as part of the device’s build.

During boot, the components utilize WolfSSL’s SHA-256
functionality (See fig. 2) to create a hash of the AP’s firmware
and matches that to the stored valid hash expected by the com-
ponent. If these hashes match, the components have verified
that the AP is valid, and acknowledge the AP’s request to boot.
If these hashes do not match, the AP’s firmware has possibly
been tampered with or compromised, and the booting process
ends, returning an error.

2) Flaws of Initial Implementation: While SHA-256 hash
generation and checking against the valid hash was a correct
approach, the initial implementation had a flawed design based
on assumptions made about the functionality of the feather
boards. The initial implementation assumed that the AP could
simply access the components’ firmware and then create a
hash to check against the valid hash, and vice versa. This is
not possible as each feather board only has access to its own
firmware, and I2C communication between the boards (which
the initial implementation did not use at all) would not support
the transfer of such a large amount of data. Additionally, the
valid hash was stored in a local file, which was insecure and
in an unreadable format for the firmware.

3) Final Implementation: The final implementation utilized
the Simple Flash and Simple I2C libraries provided with the
default firmware to properly access the flash memory of the
feather boards and send information between them using the
I2C board. Additionally, it stores the valid firmware hashes
in the secrets file, that implements the valid hashes as secret

Fig. 2. WolfSSL’s SHA-256 functionality as used in the implementation. This
function takes in a pointer to the data to be hashed and the length of the data,
hashes it using SHA-256, and saves it to a specified point.

variables that the firmware implementation will have access
to. When the AP boots, it reads its own firmware from flash
memory and creates an SHA-256 hash out of it. It then begins
to verify each component, prompting them to create SHA-
256 hashes of their firmwares and send them over I2C to the
AP. The AP will validate each hash by checking it with the
valid component hash accessed from the secret variable. If
the hash matches, the components can proceed to boot. The
components will request the AP’s generated hash over I2C,
and upon receiving it will check it against the valid AP hash
accessed from the secret variable. If the hashes match, the
component will proceed with its boot. If any hashes do not
match, the verifying device will cancel its boot process and
return an error.

While a firmware implementation was complete for these
requirements, time constraints and limited access to the test-
ing hardware prevented the implementation to be tested and
verified. However, the design is valid and fulfills the security
requirements.

B. The Attestation PIN and Replacement Token should be kept
confidential.

This goal was mainly tackled by Brianna Bumpus.
In the reference design, the firmware authorizes the attesta-

tion and replacement operations by directly string-comparing
the user’s password input against the firmware’s attestation
PIN and replacement token.

To replace this insecure verification of string-comparison,
the team instead opted to store and compare against a SHA-
256 hash of the PIN and token in the firmware. The team
also later added salting to the authorization process to further
secure these tokens.

1) Hashing: When the application processor needs to attest
or replace a component, it takes the pin or token passed by
the user and applies a SHA-256 hash against this input. Then,
this can be compared to the stored SHA-256 hash of the PIN
and token to verify the user passwords.

As the PIN and token are not stored as plaintext within
the firmware, it would not be possible for others to reverse-
engineer the binary to extract the PIN and token used.



The MITRE organizers provided a WolfSSL cryptography
example using a MD5 hashing algorithm, but upon review
the team determined the MD5 hash to be insufficient. The
WolfSSL library contains multiple hashing algorithms such
as, MD2/4/5, SHA 128/224/256/384/512, RIPEMD, BLAKE2,
etc. [3] After reviewing the options, using a SHA256 hash
algorithm seemed to be the most holistic, and fit the team’s
needs best.

When compared to SHA256, MD5 is considerably less
resistant to attacks. The largest reason for this is due to the
difference in the size of the hashed outputs; MD5 hashes are
128-bits, while SHA256 is a larger 256-bits hash. By having
a larger size, the hash becomes more resistant to collision
attacks, where an attacker attempts to find two inputs that
produce the same output after being hashed. Furthermore,
there are efficient collision attacks available that have been
specifically created for targeting MD5 algorithms and known
vulnerabilities.

Upon deciding on SHA256 as the hash algorithm, the first
step for implementation of the security requirement was to cre-
ate a new hashing function that would leverage the WolfSSL
library. To do this, the team utilized wc_InitSha256() to
initialize the SHA256 structure, next wc_Sha256Update()
to hash a byte array, and then wc_Sha256Final() to
finalize the data hashing and place the hash into a byte array.
[3]

After the new hashing function was created, it was applied
within in the application_proccessor.c code. The
AP has two functions for validating an attestation pin and
replacement token, respectively. Within each function a string
comparison is done using !strcmp(), which accepts two
strings and compares them to determine if they are a match.

Since the design utilizes string comparison, the hash func-
tion would need updated to output a string (null-terminated
char array) as opposed to a byte array. A for-loop was added
to the function as a solution to convert the byte array to a
hexadecimal string, to allow for comparison via !strcmp().

The next step after the creation and update of the hash
function was to use it to secure and keep the Attestation PIN
and Replacement Token confidential. The initial plan for the
implementation was to hash the Pin and Token in the python
build AP file, so that the plaintext pin and token are not
anywhere in the application_proccessor.c file. By
keeping the plaintext separate, it prevents the Pin or Token
from being accessible by reverse engineering the binary.

2) Hashing + Salting: Salting adds an additional layer
of security over hashing for password-type verification by
personalizing the hash to each session.

Since the authorization happens wholly within the appli-
cation processor, the addition of salting only needed to be
done within the application processor without any necessary
coordination to the components.

To implement salting onto the application processor, the
team computed a random block of 8 bytes via the built-in
true-random number generator of the MAX78000FTHR board
every time the system booted. Once a salt is computed, the

salt block is XORed with the plaintext attestation pin and
replacement tokens before SHA-256 hashed.

Then, during authorization of attestation and replacement,
the same process is applied to the plaintext (the salt block is
XORed with the plaintext before SHA-256 hashed) and then
compared against the salted hash of the firmware’s built-in
attestation pin and replacement token. The general process is
described with fig. 3.

Fig. 3. Diagram of the attestation authorization process. A similar process is
done with the replacement authorization process.

C. Component Attestation Data should be kept confidential.

This goal was mainly tackled by Nashad Mohamed and
Mahta Tavafoghi.

In the process of attestation, the component sends its
attestation data (i.e., its customer name, its manufacturing
location, and its date) to the application processor. By default
(in the insecure design), this is sent in plaintext through the
I2C channel from the components to the application processor.

The team went through two designs to implement this
goal: an AES-XTS block cipher implementation and an RSA
implementation.

1) AES-XTS Block Cipher Implementation: The original
plan was to use AES-XTS block cipher in order to encrypt and
decrypt the attestation data. Advanced Encryption Standard
(AES) is a symmetric block cipher widely used by the U.S
government to encrypt sensitive data. Data is split into blocks
of 128 bits and the same key is utilized to encrypt and decrypt
data. XTS is one of the AES block cipher modes which is more
secure, as it eliminates some side channel attacks and potential
vulnerabilities. XTS utilizes two AES keys with one key for
AES block encryption and another to encrypt a “tweak key”.
Every data unit is given a tweak value that is non-negative,
and when encrypted, it is converted into a little-endian byte
array. XTS achieves more security as the plaintext is basically
double-encrypted with the use of two independent keys.

The AES-XTS approach seemed too complicated to tackle,
and the team opted to move towards an RSA approach, as
the asymmetric key setup in RSA seemed very fitting to the
attestation task and the team was more familiar with how RSA
functioned.

2) RSA Implementation: Since the components only need
to transmit attestation data and the AP only needs to receive
attestation data, the team opted to encrypt and decrypt the
data using RSA. RSA (Rivest-Shamir-Adleman) is a type of



Fig. 4. Diagram of AES-XTS block encryption procedure

encryption that enables a public key and is usually used to
protect sensitive data. It is usually used for data that is being
sent through an insecure network. In RSA encryption there
is a private and public key. It is widely used since it assures
confidentiality and that no party can deny that it sent/received
a message through encryption. In the design, a public-private
key pair is generated during deployment. The component can
use the public key in order to encrypt a message and send it to
the application processor who can use the private key in order
to decrypt the message. This helps protect the MISC system
against attackers as the encrypted data will be useless without
knowing the private key.

While the team did successfully implement RSA during the
attestation process, the team also failed to get the implemen-
tation to pass through tests. Several unexpected issues were
faced in the process of attempting to pass implementation tests.
Notably, this included:

1) Size issues with the RSA keys
2) Timing issues with the RSA encryption process

Regarding problem 1, the team had identified that 1024-bit
private RSA keys were not large enough to encrypt the largest
possible attestation message (attestation messages could be at
maximum 206 bytes, but a 1024-bit private RSA key could
only encrypt 117 byte messages). The simple solution would
have been to upgrade to 2048-bit private RSA keys (which
could encrypt 245-byte messages); however, that caused a
second issue (problem 2).

Regarding problem 2, the attestation had to complete in
3 seconds (this was required by the rules of competition).
Notably, encrypting with a 2048-bit key took approximately
7 seconds (i.e., too much time). The solution to this problem
was to break up the message and encrypt the parts separately
with 1024-bit private keys. This did work locally (it took
approximately 2 seconds total), but on the global tests provided
by the maintainers, the tests actually took 3+ seconds, which
thus made the solution incomplete for the purposes of the
competition.

In the future, if the team were to remedy this issue, they
could try to downscale by using 512-bit private RSA keys or
dropping RSA entirely and using a simpler asymmetric-key
cryptosystem.

D. The integrity and authenticity of messages sent and re-
ceived using the post-boot MISC secure communications func-
tionality should be ensured.

This goal was mainly tackled by Henry Bui and Andrew
Graffeo.

The team attempted three approaches to the secure the
integrity and authenticity of messages through the post-boot
channels:

1) Secure Sockets Layer (SSL): The team first attempted
to implement SSL through the channels. SSL is intended for
networks, and relies on several handshakes between the source
and destination parties. The team soon realized that the size of
the handshake packets and the number of handshake packets
would be too much for the I2C channel between the AP and
components. Additionally, the implementation of SSL required
the addition of the SSL portion of the WolfSSL library which
doubled the size of the firmware beyond the competition’s
firmware limit (of 226KB).

Thus, we switched to a simpler communication protocol that
was better fit for embedded systems—ECIES.

2) Elliptic Curve Integrated Encryption Scheme (ECIES):
The second approach the team took is to implement the El-
liptic Curve Integrated Encryption Scheme (ECIES) to create
keys to encode and decode messages between the application
processor and components.

ECIES is a system to enable cryptographically secure
communication between two parties (a client and a server),
similar to what SSL does [2]. ECIES creates an asymmetric
public-private key pair between the server (which will be
the application processor) and the client (which will be the
components).

The two parties perform a handshake where they send each
other their public keys. This creates a situation where the client
has its own private key and the server’s public key, and the
server has its own private key and the client’s public key.
Together, these represent the “shared secret.”

This shared secret isn’t used directly to encrypt messages,
but rather, every time the two parties wish to communicate,
they produce an encryption salt. To perform communication,
the following process occurs (which is depicted in Fig. 5):

1) The transmitter sends their salt over.
2) The receiver sends their salt over.
3) The transmitter, using the shared secret and salt, encrypt

plain text and send the encrypted text over.
4) The receiver, using their shared secret and salt they have,

decrypt the encrypted text.
The team also decided to take a step back from the ECIES

implementation for similar reasons as the departure of the
SSL implementation. The handshakes for ECIES, while much
simpler to implement to SSL (and with more direct examples
to base the implementation on [2]), still was complicated to
implement. Additionally, the team also had around a month
remaining before the Attack Phase ended, so the implementa-
tion was further downscaled to make the implementation more
doable to complete before the end of the Attack Phase.



Fig. 5. The communication path through ECIES. Here, the client acts as a
transmitter and the server acts as the receiver.

3) Advanced Encryption Standard, Cipher Block Chaining
Mode (AES-CBC): For the third version of a solution to
security requirement 5, the team decided to take a simple sym-
metric encryption approach. The team figured that a symmetric
key approach was sufficient for secure sending/receiving be-
tween the application processor and components as that would
reduce the number of keys that had to be generated between
the application processor and components (For a symmetric
scheme, only 1 key would need to be produced between
the application processor and components. In contrast, for
an asymmetric scheme, at least 4 keys would be needed—a
public and private key for messages sent from the application
processor, and a public and private key for messages sent from
the components).

In the insecure design, the Advanced Encryption Stan-
dard (AES) was used to implement a symmetric encryp-
tion/decryption scheme (a scheme that uses the same key
to encrypt and decrypt a given message). However, it used
the Electronic Codebook (ECB) mode of AES, which is the
simplest and least secure implementation of AES. In AES-
ECB, the plaintext is split into “blocks”, each of which
undergo the same AES encryption process with the same key.
AES-ECB is known to be cryptographically insecure because
of its failure to hide patterns from the plaintext (the clearest
example of this is Wikipedia’s Tux example, which can be
seen in fig. 6).

Fig. 6. Issues regarding the use of AES-ECB.

To curtail this, we decided to move one step up and use the
Cipher Block Chaining mode of AES (AES-CBC). Like AES-
ECB, the plaintext is split into “blocks”, which are encrypted
separately. However, unlike AES-ECB, after each encryption,
the ciphertext block is XOR’d with the next plaintext block
before the AES encryption occurs. This removes the patterns
seen with AES-ECB as the plaintext data is essentially scram-
bled before being encrypted. (See the differences between
AES-ECB and AES-CBC’s implementation in fig. 7).

Fig. 7. This chart describes how AES-CBC functions. Highlighted in pink
are the additions AES-CBC when compared to AES-ECB.

The implementation of AES-CBC was done relatively sim-
ply. The process included the following steps:

1) Create both an AES key and an AES initialization vector.
2) Replace the encrypt_sym and decrypt_sym

functions implemented in simple_crypto.c
by the insecure design. This involved replacing
calls of wc_AesEncryptDirect and
wc_AesDecryptDirect (AES-ECB) in
these functions to wc_AesCbcEncrypt and
wc_AesCbcDecrypt (AES-CBC).

3) Use encrypt_sym and decrypt_sym to implement
the secure_send and secure_receive methods
that had to be secured for security requirement 5.

III. VULNERABILITY ANALYSIS AND ATTACK DETAILS

As mentioned, due to issues regarding the implementation
of certain security requirements (particularly #4), the team
never managed to get to the Handoff and Attack Phases
when attacking of other competing teams’ boards would have
been attacked and reverse-engineered. Reverse engineering is
helpful for understanding the inner workings of the medical
device and identifying any security vulnerabilities.

However, the team did do some research into reverse-
engineering and attacking. One tool that can be used for re-
verse engineering is Ghidra, which is an open source software
developed by the National Security Agency (NSA). Ghidra
allows a user to disassemble code and step through forward
and backward to understand how the functions are mapped out.
It is commonly used to investigate malware. A user imports
a binary file that is then decompiled. Ghidra’s window has a
”Symbol Tree” section that displays import, export, function,
labels, classes, and namespaces of a binary file. This is helpful
when trying to understand how the code is organized and
which functions to look in.



IV. CONCLUSION

The team learned a lot about embedded systems, cryp-
tography, and defensive cybersecurity during the process of
designing firmware for the MAX78000FTHR.

In terms of cryptography, the team learned about the differ-
ences between different hashing algorithms (MD5 and SHA-
256), salting, AES-XTS, AES-CBC, RSA, and communication
protocols (SSL and ECIES). Even when the team was not
able to implement all of the features in full, researching and
attempting to implement each feature provided knowledge
about the internal workings of each system.

In terms of embedded systems, the team learned that embed-
ded systems’ computational and storage limits are significantly
smaller than the laptops and devices everyone has, and as a
result, designing a secure, protected system has to take those
computational and storage limits into account.

The team had faced several issues regarding the timely
implementation of each of the security requirements. While
it was a good idea to task separate team members to sep-
arate requirements, the team still faced issues between team
members lacking sufficient knowledge to complete the security
requirement or the original design being too complex or com-
putationally expensive to perform on the embedded system.
In the future, designing the process should fall under these
priorities, so that the design can be completed in a timely
pace:

1) Devise the simplest idea that works.
2) Devise any variants to the idea that would help secure

the system more.
3) Devise any new ideas that are more secure, more com-

plex, and may demand more from the embedded system.
This is the approach that was taken for security requirement

3, which was the only requirement that was truly completed in
full. Applying these priorities to the remaining requirements
would likely have helped the team complete before the start
of the attack phase.
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