
Embedded Systems Cyber Security VIP
Final Paper for eCTF GT1(BuzzHack)

Lindsay Estrella
Georgia Institute of Technology

Atlanta, Georgia
lestrella7@gatech.edu

Shayan Aqeel
Georgia Institute of Technology

Atlanta, Georgia
saqeel3@gatech.edu

Jacob Devane
Georgia Institute of Technology

Atlanta, Georgia
jdevane7@gatech.edu

Tracy Guo
Georgia Institute of Technology

Atlanta, Georgia
tguo72@gatech.edu

John Zhang
Georgia Institute of Technology

Atlanta, Georgia
jzhang3213@gatech.edu

Adith Devakonda
Georgia Institute of Technology

Atlanta, Georgia
adevakonda3@gatech.edu

Scott Snow
University of North Georgia

Dahlonega, Georgia
srsnow3840@ung.edu

1. Introduction

The 2024 MITRE eCTF competition focuses on
developing and attacking microcontroller medical devices.
In this report the design decisions and implementations
of the secure firmware are outlined. These solutions
emphasize security measures like symmetric encryption
and hashing algorithms. The build environment includes
hosting necessary tools, packages, and dependencies using
Nix and Poetry. The Medical Infrastructure Supply Chain
(MISC) architecture consists of an Application Processor
(AP) and two Components implemented through the
MAX78000FTHR development boards.

The MISC functionality includes commands for listing
Component IDs, obtaining Attestation Data, replacing
failed Components, performing integrity checks, and
enabling secure communications. The security requirements
include verifying the boot process, authorizing boot-up
sequences, maintaining confidentiality, and establishing
secure communications post-boot. This report captures the
work team members have done in the competition, along
with a timeline of events and goals completed.

1.1. Build Environment and Setup

The build environment will host all of the required
tools, packages, dependencies, and other development tools
necessary for the device to run and operate. Nix will be
the main way that these dependencies will be added and
used in the design; Nix is a package manager tool that
helps manage dependencies, allowing for a consistent
and reproducible way of generating environments. The

design environment is created by using a ”nix-shell” based
on the requirements set forth in the ”shell.nix” and the
”pyproject.toml” files that were provided by the competition
organizers.

The dependencies installed are Make, Python3.9,
gcc-arm-embedded, Poetry, Cacert, Minicom, Analog
Devices MSDK, OpenOCD, PySerial, ArgParse, Loguru,
and GDBUI. After installing the required dependencies
through Nix and Poetry the Application Processor and
Components need to be generated, and updated onto the
MAX78000FTHR boards to produce a global secrets file,
which is needed to build the design.

2. Functionality

The functional requirements of the design focus on the
two stages of building and utilizing the Medical Infrastruc-
ture Supply Chain (MISC). It is important to emphasize
that the security requirements should not interfere with the
functional requirements of the medical device.

2.1. Architecture

The architecture of the medical device consists of
an Application Processor (AP) and two Components, all
three of which are implemented through Analog Device
MAX78000FTHR [1] development boards. The Application
Processor is the center of the MISC system as it handles
all communications with the host computer and uses the
I2C bus to interact with the Components to perform the
necessary tasks for the medical device. The Components are



Figure 1. Pinout Diagram

the elements of the device that provide useful functionalities
through features such as sensors and actuators.

2.2. Building the Application Processor and Com-
ponents

After properly setting up the build environment with
Nix and Poetry, the Build Deployment Phase is executed.
During this phase, the global secrets file is created in order to
generate and maintain relevant key and other cryptography
data for building the Application Processor and Compo-
nents. From here, the Components for the Medical Device
can be made. Each Component requires attestation data,
a valid ID and information from the global secrets to be
built. After creating the desired number of Components, one
Application Processor for the device is created by providing
the Component IDs for the device, a valid Attestation PIN,
a valid Replace Token, and information from the global
secrets to maintain security. If these steps are carried out
correctly, the build phase for the MISC system can move
on to creating the Medical Device.

2.3. Creating the Medical Device

After the firmware for AP and two Components are built,
a Medical Device can be created. Using the update tool, the
firmware is flashed onto the three MAX78000FTHR boards.
The Medical Device is powered by the connecting a USB
from the boot board to the host computer. This allows the
device to take commands from the host to the AP.

2.4. MISC Functionality

There are five commands that the MISC is required
to respond to. The first is the List Components command,
where the MISC lists the Component IDs of the Components
installed on the device. The next command is the Attest

command, where the MISC allows authorized users
with valid Attestation PINs to get Attestation Data from
Components at the build process. Another command is
the Replace command, where an authorized user with a
valid Replacement Roken is allowed to replace a failed
Component with a valid Component.

Additionally there is an important command being
the Boot command. The boot command runs an integrity
check on the Medical Device and the Components. If
it passes the check, it prints a boot message and allows
software to run the device. Otherwise, it terminates
the boot process. Finally, the secure send and receive
command allows the AP and Components to have secure
communications with each other through a secure channel
provided by MISC.

3. Security Requirements

This section will detail the needed requirements and
how the team will achieve them for the final secure design.
These requirements are put into place to protect critical
data and code paths that may be used to gain unauthorized
access to client information. The requirements to be listed
are: the Application Processor (AP) must only initiate the
boot process if all expected Components are present and
valid.

Components on the Medical Device should only
boot upon receiving a command from a valid AP that
has confirmed the device’s integrity. The Attestation
PIN and Replacement Token must be kept confidential.
Component Attestation Data must be kept confidential.
Ensure the integrity and authenticity of messages sent and
received using the post-boot MISC secure communications
functionality.

3.1. Security Requirement 1: AP Boot Verification

This requirement is implemented in order to ensure that
the Application Processor (AP) only boots if all expected
Components are present and valid. This security check will
be implemented by developing a comprehensive verification
mechanism within the AP firmware itself to check the
presence of all expected Components and their validity.

To first verify the connected Components, a routine in
the AP firmware queries for unique signatures assigned
to each Component to ensure proper identification. Then
to ensure validity, a secret token in the global secrets file
is hashed by each Component using SHA256 hashing
and sent to the AP. The AP then hashes this token itself
to ensure that each Component sent a matching hashed
value. If all Components are present and valid through
this method, the AP can successfully initialize a boot for
the medical device. Otherwise, the boot fails until another
request to boot is attempted, from which the verification
and validation process repeats.



Additionally, these two processes will be developed in
order to align with the Global Secrets generated during
the build process. Should any of the above checks throw
errors, robust systems for not only handling but logging
these events will be developed. This system will work in
tandem with the Component Boot Authorization detailed
in security requirement 2 in order to authorize Component
boot-up sequences.

3.2. Security Requirement 2: Component Boot Au-
thorization

This requirement is put in place so the Component will
only boot after being commanded to by the valid AP that
has confirmed the devices integrity. This will be met by
implementing a secure communication protocol between
the AP and the Components. The use of encryption and
authentication mechanisms will ensure that the valid AP
can command the Components.

A system will be developed that authorizes the
tokens generated by the AP for each single Component.
These tokens should be required by both Components
during the boot phase to ensure that the system is valid.
On top of requiring the AP and Components to check for
valid tokens the build process will need this implemented
as well. These tokens could be associated with the Global
Secrets to maintain a secure link between the AP and the
Components. Lastly, integrating a secure communication
channel between the AP and the Components using
crytographic protocols to prevent unauthorized interception
of commands will be implemented.

3.3. Security Requirement 3: Confidentiality of At-
testation PIN and Replacement Token

This requirement is meant to keep the confidentiality
of the Attestation PIN and the Replacement Tokens. With
this approach the objective is to satisfy the requirement.
First, a secure storage mechanism will need to be put
in place by implementing the mechanism within the AP
and Components to store the PINs and Tokens. An access
policy will be used to control changing/accessing the PINs
and Tokens. Only authorized processes should have access
to these secrets. An encryption should be used on the PINs
and Tokens during the storage and transmission of both.
This can be done by using strong encryption algorithms
and key management practices.

The team’s design achieved confidentiality through
hashing of each when they are passed in such that only the
hash of each exists in memory and still be used to compare
with hashed inputs to verify correctness of inputted PINs
and tokens.

3.4. Security Requirement 4: Confidentiality of
Component Attestation Data

The objective of this requirement is to keep Component
Attestation Data confidential. The first step would be to
implement a secure storage retrieval mechanism used to
gather the Component Attestation Data. Using encryption
and access controls to ensure only authorized processes
can retrieve the sensitive information. Secondly, restricting
access to the Attestation Data to a need-to-know basis for
other processes by implementing a least privilege principle
to decrease exposure.

Encryption of the I2C channel through RSA encryption
and Cipher Block Chaining ensures confidentiality of the
Attestation Data during transfer from the Component to the
Application Processor.

3.5. Security Requirement 5: Secure Communica-
tions Post-Boot

The last requirement’s objective is to ensure the integrity
and authenticity of messages sent and received during the
post-boot by using secure communication channels.
Implementing a secure communication protocol between
the AP and Components by utilizing encryption, message
authentication codes (MACs), and secure key exchange
mechanisms would solve this issue. Also implementing
mechanisms such as checksums or cryptographic hashes,
to verify messages during transmission and that will
also reject corrupted messages. Lastly, creating a process
for authenticating Components during the post-boot
communication and using digital signatures or other
authentication mechanisms to ensure that commands
come from legitimate Components to check for authentic
Components that have not been tampered with.

This requirement is fulfilled through the use of Cipher
Block Chaining in conjunction with RSA encryption. RSA
encryption adds additional security and is the first layer
of encryption applied to messages exchanged on the I2C
channel. RSA keys are exchanged during validation and
used at every point after. Cipher Block Chaining XORs the
most recently message with the outgoing message before
encrypting it, which ensures integrity and authenticity of
messages by requiring knowledge of the entire history of
communications to correctly encrypt and decrypt messages.

4. Known Vulnerabilities

4.1. Application Processor

Within the Application Processor, MD5 hashing is used
by the default hash method within the cryptography file.
This immediately stands out as a poor design choice because
of potential collisions with hashes. In order to remedy this,
another hashing technique such as SHA256 could be used



that would help to mitigate collision risk. Using WolfSSL,
as recommended by Mitre, this is a straightforward replace-
ment. The Application Processor also validates Components
by ID, which is information that can be readily available
to attackers. Instead, components can have unique keys
generated alongside the IDs, which will be checked by
the Application Processor for validity. The Attestation PIN
and replacement token are also not encrypted, which could
lead attackers to gain sensitive Attestation Data and to
replace Components with false ones. Lastly, sending and
receiving data is not encrypted, authenticated, or checked
for corruption, which can lead to exploitation in the post
boot phase.

4.2. Components

Components in the reference design are able to be booted
without proper validation from the Application Processor,
which could lead to false Components being injected into
the medical device. This can lead to sensitive data being
obtained and malicious actions being performed by attackers
through communications with the Application Processor.

5. Individual Work

This section highlights what each individual has done
during the competition. It consist of multiple detailed expla-
nations of the different sub teams such as the development
team, red team, documentary team, and etc.

5.1. Tracy Guo

Tracy Guo is a part of the red team, focusing on attack-
ing other teams’ secure design during the attack phase. She
successfully found the design document flag on the MITRE
website and debugged, configured, and updated hardware
boards to attempt to obtain the boot flag and debugger flag.
Guo has advanced her expertise with tools such as Nix shell,
Kali Linux VM, Ghidra, and CyberChef, and has embarked
on deepening her knowledge in red teaming. Tracy has
taken initiative to overcome technical challenges, notably
adapting to different software architectures by transitioning
from OllyDBG to GDB on a Kali Linux machine due to
compatibility issues. Preparing for the attack phase, she
helped her red team devise an attack plan for each of the
attack challenges as well as introducing John the Ripper
to crack passwords. Her proficiency with this tool allowed
her to contribute significantly to her understanding and
exploitation of cryptographic weaknesses. Moreover, Tracy’s
introduction to GDB has further broadened her skill set, en-
abling her to debug and analyze programs more effectively.
She quickly adapted to GDB’s functionalities, using it to
inspect the behavior of binaries.

5.2. Scott Snow

Similar to Tracy, Scott Snow is a part of the red team
which focuses on attacking opposing teams secure designs

during the attack phase. Scott is the team’s documenter
making sure to update and revise the design documentation
based on the development team’s efforts and changes made
to the secure design by the development team. This docu-
ment is submitted along with the secure design during the
hand-off portion of the competition. Scott made the teams
first advancements by finding the first flag along with the
other flags in more recent challenges. Scott also helps create
the red sub team’s attack plan to tackle the second part
of the MITRE competition, being the attack phase. He has
also completed a lot of individual study when it comes to
learning how to use reverse engineering tools like NSA’s
Ghidra and other tools like OllyDBG and GDB. He has
added the resources that he has learned from in his GTRI
VIP notebook for next years cohort to study and implement
in their attack plan. He has also undertook learning about
malware development as the attack phase’s third and fourth
attack scenario included the use of creating counterfeit parts
to exfiltrate data from the opposing teams secure medical
device. He shared the materials that he was learning from
with the rest of his red sub team, along with mentioning
and listing them in his VIP notebook.

5.3. John Zhang

John Zhang is a member of the development team,
working through the reference design to understand what
elements of the security requirements are missing or need
modification. John has helped organize the team’s meetings
and approach as well as discover insight into the system.
As a developer, he has integrated RSA encryption into the
secure send and secure receive function, implemented gen-
eration and exchange of cryptography keys, and integrated
CBC encryption from the modified simple file with the
RSA encryption to ensure the confidentiality, integrity, and
authenticity of messages exchanged between the Application
Processor and its Components across the I2C channel. He
has also added a check in the Component’s code to prevent
its booting without validation, encrypted the Attestation PIN
and Replacement Token to ensure their confidentiality, and
debugged the Application Processor.

5.4. Adith Devakonda

Adith Devakonda is a member of the development team
which makes sure the secure design submission is compliant
with the five security requirements. Until now, Adith has
successfully set up the reference and insecure examples.
He began work on the insecure example along with the
rest of the team, identifying key areas of improvement in
the Application Processor files. Some key work of note is:
finding vulnerable structs that could carry extra data when
booting and validating Components, and working on a rough
cryptographic method that employs a CBC encryption mode
as a tool for the developer team to use throughout the
five security requirements. After completing system-wide
encryption for the design, Adith helped the team debug
and hopefully compile the secure design. He continued to



help through all the roadblocks, meeting every Tuesday with
the developer team and sometimes on Fridays in person at
GTRI. One major roadblock was during compilation, when
building with WolfSSL; multiple issues were encountered
which ultimately led to the team not submitting the design
and moving to attack phase. Adith learned collaborative
development on an embedded system, which taught him
the importance of effective communication, teamwork, and
version control. It provided him with experience in nav-
igating complex projects with multiple files that were all
connected with each other. Something else Adith learned
was attention to detail. The system the team used for the
competition was larger than anything he had worked on
previously, so lots of code review became a regular practice.
This process not only ensured the quality and integrity of
the team’s codebase but also made it so that the design
team had a mindset of continuous improvement. Each line
of code was collaboratively worked on, enhancing Adith’s
understanding of the intricacies of software development and
also enhancing his precision when debugging.

In the future, Adith plans to implement strategies to
further his learning based on what he has learned throughout
this class and competition. Some strategies he will use are:

1) Collaboration Techniques: Adith plans to explore
more sophisticated version control workflows and
enhance his communication skills.

2) Architecture and Design Patterns: Adith has already
learned basic architectural code designs but he
plans to learn specific ones tailored to embedded
systems for better scalability and collaboration.

3) Automated Debugging: Adith plan to implement
automated debugging via tests so that in the future,
he does not hit a roadblock as the design team did
with the WolfSSL issues.

4) Enhanced Debugging: Adith plans to learn debug-
ging tools that can help him trace code back in a
time efficient manner.

5) Continuous Learning: Adith plans to stay updated
on new technologies and industry trends.

5.5. Lindsay Estrella

Along with Tracy and Scott, Lindsay is a member of the
red team. After a late start with the team Lindsay worked
to catch up with all group members and their work. After
struggling with setting up the required environment Lindsay
has gained more experience with virtual machines and many
of the resources offered by Mitre. Due to the requirements
of the secure design Lindsay along with the other red team
members devised a plan on how to approach the Attack
Phase. The team decided to continue their efforts in learning
how to use debuggers such as OllyDbg and DBG and reverse
engineering software like Ghidra. Lindsay in the process
developed a proficient grasp on these tools. The team also
concluded that malware development would come into use
to aid in retrieving sensitive data or causing components to
malfunction. This led to the Lindsay learning more about

malware development but due to time constraints was not
able to use these newly established skills in the Attack
Phase.

5.6. Jacob Devane

Jacob Devane is also a member of the development
team, focusing on building off of the insecure design in
order to produce a secure system. Devane has helped to
keep the development team organized with meetings and
worked collaboratively to dissect the Application Processor
code provided to by Mitre. Jacob has helped to improve the
Application Processor’s firmware by implementing SHA256
hashing for cryptographic uses. When the design was largely
complete, Devane focused on code review for the other
design team members. This process involved attempting to
build both the Application Processor and the Component
files, then reporting the build errors to the team and attempt-
ing to implement fixes. This also required researching new
things like RSA and CBC encryption in order to understand
the code the team had implemented.

5.7. Shayan Aqeel

Shayan Aqeel is a part of the development team, en-
suring that the design submitted adheres to the five secu-
rity requirements. Initially, Shayan has helped initialize the
overall team’s progress by booting the reference design and
successfully utilizing the debugger, getting the debugger
flag in the process. As a part of the development team,
Shayan has found weaknesses in the system of validating
and transferring data within the Application Processor where
data encryption and validation keys could be implemented.
From here, he implemented validation techniques for both
the Application Processor and the Components by having
both hash a secret message (using SHA256 hashing) and
send it to the other which validates that the hash matches the
actual hashed value. Lastly, Shayan implemented changes in
the make file to incorporate these secrets in a safe manner
into the shared global secrets file. Through this, security
requirements 1 and 2 were fulfilled.

6. Conclusion

This research paper has covered in detail the design,
implementation, and security requirements of the secure
firmware, as it pertains to the 2024 MITRE eCTF com-
petition. The paper has outlined the architecture of the
MISC, the build environment, and the functionality, includ-
ing the commands and security requirements put forth by
the MITRE competition organizers. The build environment,
was implemented with Nix shells and the Python Poetry
library, ensuring consistent and reproducible development
environments. The MISC architecture, comprised of the
Application Processor (AP) and two Components, along
with the process of generating and updating firmware onto
the MAX78000FTHR boards. Functionality was outlined,



including commands such as listing Component IDs, obtain-
ing Attestation Data, replacing failed Components, perform-
ing integrity checks, and enabling secure communications.
Security requirements were addressed, emphasizing AP boot
verification, Component boot authorization, confidentiality
of Attestation PINs and Replacement Tokens, confidentiality
of Component Attestation Data, and secure communications
post-boot. Vulnerabilities were identified and suggestions for
improvements were provided, such as replacing MD5 hash-
ing with SHA256, encrypting sensitive data, and implement-
ing secure communication protocols. Individual contribu-
tions during the competition were highlighted, demonstrat-
ing the efforts in developing, red teaming, and documenting.

References

[1] MITRE Embedded Capture the Flag (eCTF) Website, https://ectfmitre.
gitlab.io/ectf-website/index.html

[2] Maxim Integrated Products, MAX78000FTHR Technical Documen-
tation Data-sheet, Pinout Diagram, https://www.analog.com/media/en/
technical-documentation/data-sheets/MAX78000FTHR.pdf

https://ectfmitre.gitlab.io/ectf-website/index.html
https://ectfmitre.gitlab.io/ectf-website/index.html
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX78000FTHR.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX78000FTHR.pdf

	Introduction
	Build Environment and Setup

	Functionality
	Architecture
	Building the Application Processor and Components
	Creating the Medical Device
	MISC Functionality

	Security Requirements
	Security Requirement 1: AP Boot Verification
	Security Requirement 2: Component Boot Authorization
	Security Requirement 3: Confidentiality of Attestation PIN and Replacement Token
	Security Requirement 4: Confidentiality of Component Attestation Data
	Security Requirement 5: Secure Communications Post-Boot

	Known Vulnerabilities
	Application Processor
	Components

	Individual Work
	Tracy Guo
	Scott Snow
	John Zhang
	Adith Devakonda
	Lindsay Estrella
	Jacob Devane
	Shayan Aqeel

	Conclusion
	References

