
Wyze Paper Spring 2024

Varsha Jacob, Spencer Redelman, Robert Ward, Michael Edoigiawerie,
Joshua Muehring, Deniz Timurturkan

February 2024

1 Abstract

This paper covers the work done on the Wyze IP
Camera by the Embedded Systems Cyber Security
VIP at Georgia Institute of Technology. The paper
will include work up to and including Spring 2024.
The VIP Project’s goal is to manually reverse engi-
neer the wireless communications protocol portion of
the Wyze IP Camera in order to find any vulnera-
bilities in its code. The main areas of focus in the
wireless protocol for this semester’s research include
the camera’s methods of receiving, transmitting, and
processing packets. The camera’s binary was disas-
sembled in Ghidra to provide psuedo-C code, which
is being used to learn more about each of these sec-
tions. In the future, the results found from manually
reverse engineering the camera will be compared to
the results of automatically spoofing the camera, in
order to determine if automatic spoofing is a viable
candidate for finding vulnerabilities in RF devices.

2 Introduction

The Wyze IP Camera is an IoT (Internet of Things)
device which allows users to see a camera feed that
they are not physically present for. The Wyze Cam-
era has both a web application (Wyze Web View)
and a mobile application (Wyze App). After setting
up the camera and connecting to it, users can then
view the camera’s feed at any point in time through
the web app or the mobile application. This process
includes first physically setting up the camera in the
preferred location and creating an account on their
personal devices. The user will then pair the camera
and connect it to their account. After the set up is
complete, users will be able to view remote footage
from the camera on their personal devices. The Wyze
camera is advertised as a camera for homes, rental
properties, and businesses [1].
The purpose of the team’s research is to reverse engi-
neer the firmware from the Wyze IP Camera’s Sensor

Bridge. The team is specifically trying to gain infor-
mation regarding how the camera sends, receives, and
processes information in order to form and send mal-
formed data to the camera. From this, the team can
see how the camera behaves when it encounters mal-
formed data, which could reveal information about
the camera’s vulnerabilities.
Previously, the Embedded Systems Cyber Security
Wyze Team has been able to physically take apart the
camera and reverse engineered its function. The team
has previously set up a Man in the Middle attack in
order to get the firmware and utilized debug ports in
order to exfiltrate the camera’s memory state. The
team has also been able to perform a replay attack
on the device and perform memory captures on the
camera. In this semester’s research, the team is using
the memory capture in order to further reverse engi-
neer the camera’s process of data manipulation while
receiving, sending, and processing data.

3 Device Description

The Wyze Camera is able to utilize data from
two sensors, the contact sensor and the motion
sensor. See Figure 1 for the Contact Sensor
(left) and Motion Sensor (right) hardware. It
also includes an SD card slot to save footage.

Figure 1: Peripheral Sensor Hardware
These peripheral sensors communicate with the sen-
sor bridge via proprietary RF communication. The
sensor bridge is the component that is responsible
for connecting peripheral sensors to the device’s mi-

1



crocontroller. The sensor bridge then communicates
with the camera through a USB form factor. The
camera’s processors finally use IEEE 802.15.4 wi-fi
in order to send their data to the Wyze user applica-
tion, which is available both as a mobile app and as

an online web service.
Figure 2: Wyze Camera System Communication
Overview

FSK (Frequency Shift Keying) is used to commu-
nicate between the peripheral sensors and the sensor
bridge, where FSK supports data rates of 625 bps to
4 Mbps. It can also perform Minimum Shift Keying
(MSK) and On-Off Keying (OOK) Modulation. The
TI CC1310 utilizes two processors (ARM Cortex M3
& M0), as well as peripheral controllers.

Figure 3: Wyze Camera Hardware

Figure 4: TI CC1310 Chip Overview [2]

The first processor, the ARM Cortex M3, is the
main processor. The M3 processor is part of the the
system-side and runs the user application, operates
on the information from the TX and RX packets. The
M3 utilizes a 8Kb Cache and 20Kb SRAM as seen in
Figure 4. The second processor, the ARM Cortex
M0, is part of the radio-side and receives commands
from the M3 processor. This processor creates pack-
ets to send to the M3 processor, similar to the M3
the M0 has a 4Kb SRAM as seen in Figure 4.

The Wyze Camera implements a Ingenic T20 pro-
cessor running Busybox Linux. On boot, the Wyze
Camera configurs the basic system environment be-
fore other services start through /etc/init.d/rcS.
Later calling/system/bin/iCamera and /sys-
tem/bin/dongle app where iCamera is the main util-
ity and dongle appmanages the communication with
the sensor bridge.

”The (cc1310) RF core receives high-level requests
from the system CPU and performs all the necessary
transactions to fulfill them. These requests are pri-
marily oriented to the transmission and reception of
information through the radio channel, but can also
include additional maintenance tasks such as calibra-
tion, test, or debug features. [2]”

Figure 5: CC1310 Hardware Support for the HAL [2]

A radio doorbell module (known as a CPE ”com-
mand and packet engine”) is utilized as the primary
means of communication between the system and ra-
dio CPU. Where parameters and payloads are trans-
ferred through the system & radio RAM and dur-
ing operation the radio CPU updates parameters and
payloads in its RAM and raises interrupts. Specif-
ically, commands are sent to the radio through a
CMDR register and the radio CPU is notified when-
ever a value is written to this register. After process-
ing the value in this register, a RFCMDACK inter-
rupt is raised and mapped to RFACKIFG register.

2



There are 3 types of commands able to be issued
through the CMDR register:
1. Radio Operation Commands
2. Immediate Commands
3. Direct Commands

For Radio Operation and Immediate Com-
mands the CMDR register contains a pointer to
the command structure w/ the 2 LSBs set to 0.

Figure 6: Radio Operation and Immediate Command
Structure [2]

For Direct Commands the 2 LSBs are
set to 01, a command ID set in bits 16-
31, and optional parameters in bits 2-16.

Figure 7: Direct Command Structure [2]

In the sense of context for the later TX analysis of
”Erro Check StartTrigStartTime” the RF core has a
dedicated timer module (Radio Timer = RAT) that is
used in execution of Radio Operation commands w/
delayed starts or any that runs the reciever or trans-
mitter. The RAT allows for Compare and Capture
events that respectfully raise interrupts on when the
Radio counter reaches a certain compareTime and to
record the time of transitions of input pins.

4 Existing Vulnerabilities

Research teams have discovered weaknesses within
the Wyze Camera. These include ways to get around
the authentication and buffer overflows in the In-
put/Output control of the Wyze Camera. To log
into the cellphone application, you need to have a
username and password in order to authenticate. To
link the app and camera together, the camera then
transmits a code to the user’s phone. A flaw in this
prevents the authentication code from actually be-
ing kept in the camera’s memory; instead the NULL
value that is originally there is retained. The camera
will then be connected without actually receiving the
authentication code as long as the NULL value is
entered as the code [3]. Also, though a password is
needed to authenticate the camera, it can be cracked,
especially when the password is weak, as many users
may have.[4]

A buffer overflow during the authentication pro-
cess has also been found inside the IOCtl (In-
put/Output Control) [3]. When there is an input,
the size of the payload is included. A big payload
exceeds the buffer and writes outside of the space
allotted because the camera does not compare this
value to the size of its destination buffer.

As of February 16 of 2024, Wyze also reported
that there was a technical glitch with AWS. 13,000
user clients saw other user’s homes[4] because of a
third-party app that would cache the client library of
the camera, and it had mixed up the Device ID and
the User ID [3].

5 Reverse Engineering Results

RX Analysis

The sensors in the device has mini-managers
called micro-controllers that create messages. In the
receiving part (RX), various elements, like managing
addresses and handling the reception queue, make
sure the communication between the device and the
system is smooth and trustworthy. The data queue
acts like a conveyor belt, moving packages (messages)
between the radio frequency core (RF CC1310) and
the main brain of your device, the CPU.

As the message travels through the RX chain,
which is like a series of stops, certain parts of the
message are removed. This ”stripping” process isn’t
limited to just between the CPU and RF; it happens
at different points within the device. It’s akin to
opening a package, extracting what’s necessary, and
passing along only the vital information. For the
semester, our goals is to understand how we found
data structures and be able to point to the first entry
of queue, code, etc, but also extend this knowledge.
By looking at different functions and understanding
more and more about the device and how it works,
we can we can have a better understanding for our
future goal, which is using Scapy to spoof the system.

3



Figure 8: rfc CMD PROP RX ADV s Command
Fields Analysis of matchingIndexFinder

Figure 9: matchingIndexFinder Function

The function mathingIndexFinder is used for de-
termining an index based on the input parameter
and performs actions based on this index. The index
is found by delving into the function AddressCount
which operates on a presumed address converted from
the input. If the obtained index is 0xff, the function
returns -1, indicating no match was found. If the in-
dex is valid, the function checks a function pointer
array (likely for handler functions), dereferencing the
function at the calculated array position using the in-
dex. If the dereferenced function pointer is non-null,
it calls this function with the input parameter and
returns its result. In our case, since we know from
000014f0 seems important packetthat the input is an
int 8 (local8

¯
), all input variables will be 8. If the func-

tion pointer is null, it returns -2, indicating an error
due to a null function pointer. The function deals
with mapping input values to specific function han-
dlers, handling errors, and undefined handler func-
tions.

Analysis of AddressCount

Figure 10: addressCount Function

The function AddressCount is a function that it-
erates through a list of addresses to find a specific ad-
dress depending on the input, which in our scenario
is 8. AddressCount function returns two things:

count = count & 0xff
count = 0xff;

This totally depends on what the loop pointer is.
After delving more into the function we can actually
find the array values of PTR LOOP 200023dc, and
what value we get after iterating through it a few
times:

Figure 11: The address values around
&PTR LOOP 200023dc.

We know that a single iteration inside the for loop
means a 3 byte addition for our loop pointer. This
means after a single count iteration, loop pointer will
be pointing to 200023e8, which is 0008h. We now
know that loop pointer = 8. Due to the if statement
inside, we take exit after count = count & 0xff and
since count is 1, we just print out 0xff. This way we
know count will stay one (1 & 11111111 = 1) and the
function will return that.

4



Analysis of 000048e4 packet switch Green
function
The function 000048e4 packet switch Green is a
packet processing routine with lots of switch state-
ments that determine the specific operation to be
executed.We don’t know if this is a state machine
or just a bunch of nested ifs. Until we know
for sure, we are going to call it a routine with
logic to determine. It handles a variety of packet-
related cases, including packet creation, manipu-
lation, and forwarding. Depending on these 16
cases, the function performs tasks such as copying
data, calling other functions, and interacting with
specific memory locations. The function is part
of 000014f0 seems important packet, located at
the bottom of the tree where it’s affiliated with an-
other method we’ve worked on the previous semester
PTR mathingIndexFinder (in 200023a8).

Figure 12: Cases 4 through 7, a showcase of what
the function looks like, as well as the 4 addition each
case.

Another interesting thing about the switch cases
is that each time a case statement is checked, the
next one will be checked with an additional +4
value. Starting from case 1, we simply check if
PTR DAT 2000284c == 0. Then, for the second
case, we check PTR DAT 2000284c + 4 == 0. For
third, PTR DAT 2000284c + 8 == 0, etc. The func-

tion increments the value of a byte to check different
addresses if they equall 0.

The 000048e4 packet switch Green function
takes in a parameter of 0, which is initialized at
000014f0 seems important packet. On one scenario
it could also be 2, but that if statement is not being
passed through, also the value being 2 would make
no sense. So, we decided on the value 0.

Figure 13: 000048e4 packet switch Green lines 24-30

Lines 24 − 30 provide an opening for this func-
tion. We know that it skips the if statements and
starts the 16 switch cases. This is a dereferencing
of a dereferencing. The first dereference takes to lo-
cation of array where value is located where master
stack is at (At the top of the file). Second dereference
takes us to stack begin 2 dereferences.

Figure 14: MasterStackPointer.
This is where we get after the first dereferencing, and
after the second one, it becomes stack begin which is
BEh (hexadecimal, BE). After this, we start delving
into 16 switch cases.

The main switch case we’ve been working on
was case 7, and that is because case 7 checks if
PTR DAT 2000284c does NOT equal to 0, which
makes more sense. Every other switch case checks
if PTR DAT 2000284c + x == 0.

5



Figure 15: Case 7 of the packet switch Green Func-
tion
Case 7 first checks if the data + 18 does not equal
to 0 (which we believe holds), then jumps into
FUN 000118d4(0). This is where we left off this
semester and are planning on continuing in the fu-
ture.

Figure 16: FUN 000118d4 for showcase

Another thing we observed was that another vari-
able called local 58 (refer to figure 12) frequently ap-
peared in most switch cases. Whenever a switch case
contains this variable, it either gets assigned to an
accessed piece of data after param 1 was typecasted
and dereferenced, or it gets assigned to a concatena-
tion of local 58 and some section of param 1.

We also see that local 58 gets concatenated with
param 1 in two ways. The first method concatenates
the upper 2 bytes of ”param 1 + 2” with the upper
2 bytes of local 58 while the second method concate-
nates the upper 3 bytes of local 58 with the second

byte of param 1.

TX Analysis:
Packets from the Wyze camera are composed of a
1bit to 32 byte Preamble, 8 to 32 bit Syncword, 0
to 32 bit header, 0 to 8 byte address, arbitrary size
payload, and a 0 to 16/32 bit CRC (see Figure 16).
We know that the preamble is a series of alternat-
ing 1’s and 0’s used to gain control of the receiv-
ing/transmission link, syncword is a unique sequence
used by the packet engine to detect the start of the
packet, header containing some packet metadata,
and a CRC (cyclic redundancy check) used to verify
the message’s integrity. The cc1310 allows for multi-
ple modes of radio transmission, however the Wyze
developers chose to operate using it’s proprietary
mode. In order to prepare for packet transmission
using cc1310’s proprietary mode, the radio must be
set up with the CMD PROP RADIO DIV SETUP
command. To transmit a packet the TI CC13x0 uti-
lizes the CMD PROP TX ADV command. [2]

Figure 17: Advanced Packet Format [2]

Building off the previous semester’s work, references
to the rfc CMD PROP TX ADV s command struc-
ture was used to identify functions that cooresponded
to RF Core operations.

Figure 18: rfc CMD PROP TX ADV s Command
Fields:

Certain fields of this command structure were im-
portant to identify as they corresponded to important
packet processing functionality. Using pPkt we can
idenfy the data being sent between modules, preTrig-
ger is helpful in determining the length of preamble
bytes and where the syncword starts in packet trans-
mission, pktLen / numHdrBits we can use to inden-
tify the length of payload / header data in a capture
of RF traffic, and pktConf & startConf are useful
in determining how the specific packet was manufac-
tured and what the redundancy checks encompass.

6



Figure 19: a description of packet fields [2], as
seen in Figure 16

Analysis of Init TX ADV Pkt Function:
We were able to locate this function by search-
ing for references of the TX command structure
rfc CMD PROP TX ADV s identified by the teams
of previous semesters. Where this specific func-
tion pulls a global pointer to a potential TX
packet, checks for any interrupts blocking the
creation of the packet, and after some error
checking on the pointer and it’s defenced value
populates the rfc CMD PROP TX ADV s.pPkt,
rfc CMD PROP TX ADV s.status, and rfc CMD PROP TX ADV s.syncword
fields. Utilizing a local variable .pktLen data
is pulled out and stored in memory under
rfc CMD PROP TX ADV s.pktLen In addition, the re-
spective CS command is detailed and stored under
a local variable COND RULE, renamed to repre-
sent the Carrier Sense Conditional Rules (see below)

Figure 18: Conditional rules [2]

With the major fields of rfc CMD PROP TX ADV s
populated and the specific command structure cho-
sen as to align with an inputted COND RULE, the
return value of (FUN 000057d0) is used to populate
a global address renamed to PKT PTR TX

Analysis of Shared FUN 000057d0 Func-
tion:
6 Parameter function called at the end
of FUN 00005d00 (Init TX ADV Pkt) and
FUN 0000b6a0. Passed into this function is a global
variable pointing to a callback function, Carrier Sense
Command previously determined, Address of empty
local variable (free memory space), Packets / TX
commands to be sent, and some hardcoded values 2
and 0.

Figure 20: Fun 000057d0 Method Signature

The primary purpose of this Fun 000057d0 is to
compile the fields of a CMD PROP TX ADV com-
mand and return a pointer to the compiled struct
(known locally to this function as Ret Array)

In the later conditionals of Fun 000057d0, a func-
tion ”Error Check StartTrigStartTime” is used to
determine a RF RatModule channel mode, spec-
ifying the RF RatMode to be either Compare
(RF RatMode = 1, line 81) or Capture (RF RatMode
= 2, line 97)

Figure 21: 1st and 2nd use of Er-
ror Check StartTrigStartTime

Here we check the validity of this a located
startTime (through function call on line 73) and
RF Object startTime with conditional (line 76) call-
ing Error Check StartTrigStartTime, if this passes
we set the RF RatModule channel mode to 1 (Rat-
ModeCompare) and set the respective dereferenced
RetArray value to this startTime. Then, if the
RF RatModule is 0 (RatModeUndefined) we set a lo-
cal temp strtTime to the value of the RF Object start
time and check the validity of this value (conditional
on line 89). If this passes we enter a while loop check-
ing startTime values until one returns with no error

7



(Error Check StartTrigStartTime check on line 95).
On the first Error Check StartTrigStartTime no er-
ror (we have a valid startTime and startTrigger), we
set the RF RatModule channel mode to 2 (RatMod-
eCapture) and store the startTime in the Ret Array.

Figure 22: 3rd use of Error Check StartTrigStartTime

If a proper startTime is not found in the previous
while loop, the RF RatModule channel mode is set
to 4 (not a documented RF RatMode) based off re-
turn value of FUN 0000b854, else if the the current
channel is 0 and iV ar3! = 1 we enter an empty for
loop (possibly just iterating to a populated startTime
field). Continuing, Error Check StartTrigStartTime
is called twice to validate the current value of start-
Time, and if there is an error we retry finding the
startTime through the use of a DetermineChannel
label (points back to line 69).

Later in Fun 000057d0 there are handlers for
each of the specified RAT channel modes (Unde-
fined, Compare, Capture) as well as a handler for a
developer added mode aptly named ”Custom”. As
noted in the Technical manual ”In Compare Mode,
the timer generates an interrupt when the counter
reaches the value given by compareTime. The in-
terrupt is mapped to RFHWIFG” and for Capture
Mode ”When the transition occurs, the current value
of the RAT is stored in the RATCHnVAL register
corresponding to the selected channel and the timer
generates an interrupt”. However the handler for
Undefined mode checks for some undelt data located
in the Ret Array struct and sets bits in the command
and Ret Array struct cooresponding to this scenario.

Figure 23: Custom Rat Mode Handler

In the case that the Rat channel mode ==
4 (not a documented value) we call an encapsu-
lation of function aptly named ”customRatFun”

w/ a passed in client struct, callback function,
and specified flags cooresponding to the client.

Figure 24: customRatFun Method Signature

Here we validate the callback function, and cal-
culate an offset to the callback function. After vali-
dating this offset we then specify a length field and
utilize the doorbell module to send some data (fur-
ther analysis required)

Figure 25: customRatFun Body

Analysis of Error Check StartTrigStartTime

One of the functions analyzed this semester
was a FUN 0000d584 (later renamed to Er-
ror Check StartTrigStartTime) that was called mul-
tiple times in the shared function. The result
of this function was used to conditionally set the
RF RatChannel mode between RAT Capture and
RAT Compare.

Figure 26: Error Check StartTrigStartTime Method
Signature

This function is compromised of 2 main condi-
tionals each checking the validity of the passed in
startTrigger (ID of the trigger that starts a Radio
Operation Command) and startTime (Actual start
time of the Radio Operation Command) fields of the
Radio Operation Command.

8



Figure 27: 1st Conditional

Initially on line 25, the validity of startTrig-
ger (uV ar2 ! = 0), checks the validity of
RF EventSync value (uV ar2+0x28! = 0), and the va-
lidity of the POTEN TX PKT pointer (Ret Array+
0xC ! = 0). If all is valid we check if
the POTEN TX PKT pointer is not equal to the
RF EventSync field, if this true then we pull the ad-
dress of a 000001ec read radio SRAM GREEN func-
tion (further analysis required for functionality of this
function) and use a bitwise arithmetic to create an
”offset” using values of Ret Array and startTrigger,
after doing some bounds check on this offset we set
a local boolean to true (noErrorStartTrig = true)
Therefore we conclude that the 1st conditional is a
validity check on startTrigger.

Figure 28: 2nd Conditional

Similar to the 1st Conditional, we initially check
the validity of startTrigger, RF EventSync, and
POTEN TX PKT pointer (line 54) as well as check
if the POTEN TX PKT pointer is not equal to the
RF EventSync field. Where it differs is that we now
calculate an ”offset” using the values of startTime
and Ret Array and after some bounds check sets a
local boolean to true (noErrorStartTime = true). If
both local booleans are raised then we return 1 (no
error) and 0 if either are not raised (error).

Analysis of FUN 0000b6a0 Function:
Found in the references of the TX command struc-
ture, this function modifies data values involved
in the radio operation command structure such as
commandNo, startTime, and startTrigger.

Figure 29: FUN 0000b6a0 lines 15-19

The assumption is that the radio must be set up
in a compatible mode (such as proprietary mode)
and the synthesizer programmed using CMD FS as ref-
erenced via the TI manual.

Figure 30: FUN 0000b6a0 lines 21-24

These lines of code directly modify the data
fields of startTime and startTrigger in the
RFC CMD PROP TX ADV s structure. It sets startTime,
which is responsible for absolute or relative start
time, to 0. In the next line with the data
type of struct 147, it contains four data fields:
triggerType, bEnaCmd, triggerNo, and pastTrig.
It modifies startTrigger by performing a bitwise
AND operation, clearing the first four bits and pre-
serving the next four bits, from least to most sig-
nificant. The triggerType, the first four bits, is
retained, while bEnaCmd, triggerNo, and pastTrig,
the last four bits, are set to 0

Figure 31: FUN 0000b6a0 lines 34-36

In these lines, iVar2 is being set by a function
call at address 000057D1h, named FUN 00057d0.
It passes in six parameters: Poten TX CallBack,
&RFC CMD PROP TX ADV s 20002330 (start of TX
structure, commandNo), address of a local variable,
address of a function, and the literals two and zero.

Figure 32: FUN 0000b6a0 lines 38-41

The if statement is checking if iVar2 is popu-
lated with data, which the team suspects is a com-

9



plete TX data entry combined together after the
FUN 00057d0 call. The next line sets a pointer to
a rfc CMD PROP RX ADV s 200024a4, which leads to
the RX structure, to a pointer of the address of the
rfc CMD PROP TX ADV S 20002378 structure.
Given the function’s involvement in both the TX and
RX structure, it may be a good candidate to keep
investigating.

Analysis of FUN 00007fc4 Function:
Additionally found in the references of the TX com-
mand structure, this function modifies startTime

and startTrigger. This function relies heavily
on the parameter passed in, with lots of if/else
statements. Using Ghidra’s tools, we determined
that the parameter passed in is equal to 1. Us-
ing that, we can identify the control flow to see
which conditionals will execute. This leads us to
a function call of FUN 0000df28() which then ei-
ther calls FUN 0000aae4() or FUN 0000b15c() which
both seem to modify values of memory around
Poten TX pPkt and modify startTrigger. In ini-
tial research of the FUN 0000b15c() function, the
modification of values around Poten TX pPkt did not
execute due to conditionals and research efforts were
moved to FUN 0000aae4(). This function modifies
startTrigger, setting the trigger type to TRIG NOW.
This aligns with the manual, in that the TX ADV
structure needs the preTrigger to be TRIG NOW for
transmission to start. Further analysis is required to
identify functionality.

Packet Processing
The 00002520 packet processing function was also
one of the functions of interest since it operates on
packets in the RX queue. Understanding the be-
havior and logic of this function is crucial to under-
standing how the camera expects data packets to
be, which will later help in creating malformed data
packets. This function takes the current packet in
the RX queue and uses its header and payload bits
to process the payload. The function is broken down
into four main components: Error Checking, Setup,
Processing, and Error Handling.
Error Checking: The first part of the function works
on the inputs to the function in order to ensure that
the radio is still properly transmitting and there have
not been any fatal errors. These include checking the
status of the radio, in order to ensure that the radio is
still transmitting properly and is in the ”OK” state.

Figure 33: An example of an error check.
This portion is checking the status of the
rfc CMD PROP RX ADV s 2000237 through its status
attribute.
There are many possible radio statuses avail-
able, and a complete list is seen in Figure 34:

Figure 34: A complete list of possible radio statuses.

Setup: After ensuring that the radio is still op-
erating normally, the function continues to set
up variables for the later sections. In this part
of the function, the header provides informa-
tion regarding the format of the packet, includ-
ing the length of the packet, the length of the
CRC, and whether or not whitening is enabled.

Figure 35: One portion of the setup section of this
function. Here, the current packet in the RX queue is
being used to calculate the length of the packet and
find and store the location of the second byte of the
packet (lines 171 and 172).
Processing: After the variables are set, the function
uses them to operate on the payload of the packet.
The processing section is the main area of focus for
this semester’s research.
Within the processing section, there were a few sub-
functions that the team investigated this semester.
Each of these functions was determined to be
important because they either edited the RX
queue, or they edited the packets in the queue.
The functions include FUN 00010fb8 queue pop,
FUN 0000f934 GREEN edit value, and FUN 00011684 CMP.
FUN 00010fb8 queue pop
FUN 00010fb8 queue pop is a function that
is called during the processing section of
the 00002520 packet processing, among
other places. This function sets the cur-
rent entry in the queue to the next entry.

10



Figure 35: The FUN 00010fb8 queue pop function.

In this function, the first byte of the current packet
is cleared, if it was not already 0, which is seen in
lines 9 and 10 of figure 34. Next, the pointer to the
next entry in the queue is set to 0, which is seen on
line 13 in Figure 34. Finally, the pCurrEntry of the
Data Entry Queue 20003a60 queue is set to the cur-
rent entry’s next entry pointer, effectively popping
the first entry from the queue, which occurs on line
14 in Figure 35.
0000f934 GREEN edit value
0000f934 GREEN edit value is also called during the
processing section of the packet processing function.
This function takes in three parameters, an address,
a value, and a length, that are used later in the func-
tion. At a very high level, this function is using the
parameters passed in to modify the value parameter
passed in and edit the value that is stored in the
passed in address. At the beginning of the function,
there is an if statement that checks the if the address
of the function is a multiple of four. Based on the
results of this boolean, the flow of the function splits
into one of two cases.
The first case occurs if the address passed into the
function is not a multiple of four. This case is shown
in Figure 36. The function then checks if the length
passed in is 0, on line 26. If so, it decrements length
and increments the value passed in, which occurs on
lines 28 and 30 respectively. This will repeat until the
value reaches a multiple of four. Once this condition
is satisfied, it will check if the length is equal to 0,
and if so, it will return the address passed into the
function.

Figure 36: The first case of the
0000f934 GREEN edit value function.
The second case occurs if the address passed in is
not a multiple of four. This case is show in Fig-
ure 37. In this case, the function concatenates the
value passed in to itself and sets the result of this
to the local value dword variable, as seen on lines
44 and 46 respectively. Then, it will check the
length parameter: if it is less than 15, the func-
tion will set the first four bytes in the local value
variable to the value stored in value dword. It will
then decrement the value of the local variable uVar1
by 16, until it reaches a value that is less than
15. This functionality can be seen in Figure 37.

Figure 37: The second case of the
0000f934 GREEN edit value function.
Finally, this function will set the the fourth,
third, second, and first bytes of the value vari-
able to the local variable value dword. The
assignments happen in this order on lines 69,
77, 84, and 88 respectively in Figure 38. Fi-
nally, the function returns the address passed in.

11



Figure 38: The final part of the second case of the
0000f934 GREEN edit value function.

FUN 00011684 CMP
FUN 11684 performs a string compare and processes
the packet that is passed to FUN 11684 by comparing
two variables. These two variables are data looped
until they are zeroed out or the first one passed
through becomes less than the second one. After
that is done there is one final check done by the
FUN 0001128 check0 TX function before they are re-
turned.

Figure 39: The FUN 00011684 CMP function.

Error Handling: This final portion of the function
contains error handlers. If there were any errors that
occurred in the Error Checking portion of the func-
tion or while the packet was processing, there will be
a GOTO label that matches one of the handlers in
this section. This section accounts for handling any
unexpected behaviors.

6 Conclusion

The purpose of this research is to gain a better under-
standing of the way that the Wyze Camera expects
to receive, transmit, and process data. By reverse en-
gineering the relevant parts of the disassembled code,
we can gain more information about how the camera
manages and transforms data. By gaining a better
understanding of this, we will be able to send pur-
posefully malformed data to the camera in order to
see how the camera reacts. Sending malformed data
will potentially result in the camera throwing errors
or exceptions, or by exhibiting unpredictable behav-
iors. By monitoring how the camera reacts to these
inputs, we may be able to find vulnerabilities that
can be exploited in the camera. Having an idea of
how the camera should behave in the ideal circum-
stance will also provide a baseline that we can use
to compare to the camera’s behavior with malformed
data.
A future goal of the project is to complete this pro-
cess automatically through a process called fuzzing.
When fuzzing is performed on the camera, malformed
data will be continuously sent to the camera, and the
camera’s output will be constantly monitored in or-
der to look for unpredictable behavior, exceptions,
or errors. This process can reveal information about
the camera’s vulnerabilities in a way that is faster
and more efficient than manually reverse engineering
the camera.
The end goal of this project is to take the informa-
tion learned from reverse engineering and comparing
it to the results gained from later fuzzing the code.
This will show if fizzing is a viable alternative to re-
verse engineering when finding vulnerabilities in an
IoT device, which will greatly increase the efficiency
of this process.

7 References

[1] “Wyze,” Wyze. https://www.wyze.com/
[2] Texas Instruments, “Cc13x0, cc26x0 sim-
plelinkTM wireless mcu technical reference manual,”
Texas Instruments, Feb 2015.
[3] Security vulnerabilities identified in Wyze Cam
IOT device - bitdefender. Bitdefender. (2022, March
29). https://www.bitdefender.com/files/News/CaseStudies/
study/413/Bitdefender-PR-Whitepaper-WCam-
creat5991-en-EN.pdf
[4] Ahmed, D. (2024, February 20). Wyze cameras
glitch: 13,000 users saw footage from others’ homes.
Hackread. https://www.hackread.com/wyze-
cameras-glitch-users-saw-home-footage/

12


