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Abstract — This paper covers details about
the Wyze Camera and the Georgia Tech Em-
bedded System Cyber Security’s research into
the camera as of Fall 2024. The goal of the
research project is to exploit the Wyze IP
Camera. This paper demonstrates our work
to reverse engineer the Wyze Camera’s radio
frequency (RF) protocols. The team will then
try to replicate these results through a process
called fuzzing. The results of these two pro-
cesses will then be compared to see if fuzzing
is a viable alternative for manual reverse en-
gineering RF devices.

I. Introduction

Georgia Tech’s Embedded System Cyber Security
Team’s goal is to analyze embedded systems through
various means such as reverse engineering, vulnerabil-
ity discovery, and forensics analysis. The team works
on various devices such as radios, modems, routers,
and embedded controllers. The main focus on this
paper is the team’s work on the Wyze Camera.

The Wyze IP camera is a popular branded cam-
era that people use for both their homes as well as
their businesses. The Wyze camera is controlled by
using the Wyze mobile application. Users must first
download the Wyze app, and then place the cameras
at which ever location they desire. After completing
the setup on the app, users are able to utilize the
Wyze camera to its fullest. Some of Wyze camera’s
capabilities include two-way audio, integration with
other smart home devices like Amazon Alexa, motion
and sound detection, as well being able to view the
camera feed using the mobile application.

While the Wyze camera is very popular, numer-
ous vulnerabilities within the device have cause some
consumers to distrust Wyze’s systems. Some of the

discovered vulnerabilities include authentication by-
pass, remote control execution flaw caused by a stack-
based buffer overflow, and access to the Camera’s SD
card without authentication [3]. Breaking the cam-
eras system will allow for the discovery on new vul-
nerabilities.

In the previous semester, the team used the mem-
ory capture in order to reverse engineer the cam-
era’s process of data manipulation. This semester,
the team plans to further understand the over-the-air
protocol between the sensors and camera. Further-
more, the team plans to develop a testbed for RF
fuzzing, or sending malformed data to the program.
The end goal of the team’s research is to exploit these
systems through a process called fuzzing to generate
the same results in order to see if fuzzing is a feasi-
ble alternative for manually reverse engineering RF
devices.

II. Device Description

Fig. 1. Diagram of high-level components of the
Wyze Cam V2, annotated with means of internal

dataflow.

The team is currently working on a Wyze Cam
V2. It is made up of several devices: a sensor bridge,
contact sensor, motion sensor, and the camera it-
self. The motion and contact sensors communicate
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with the sensor bridge through RF signals. The sen-
sor bridge and camera are connected through USB,
allowing for the transmission of information to and
from the sensors. The camera andWyze cloud servers
are internet connected, which allows for data to be
transferred to the Wyze application from the servers
and vice versa.

Each one of these high-level components repre-
sents a distinct board within the Wyze camera sys-
tem. The subsequent sections will enumerate every
components with a photo and functional description.

A. Contact Sensor and Motion Sensor

Fig. 2. Labeled photo of contact sensor board.

Fig. 3. Labeled photo of motion sensor board.

The contact sensor and motion sensor communicate
wirelessly with the sensor bridge. The printed cir-
cuit boards (PCBs) for each sensor are similar, with
both having an antenna and CC1310 microcontroller.
However, the contact sensor has a magnetic switch
and the motion sensor has a passive infrared (PIR)
motion sensor. The magnetic switch on the contact
sensor aids in the transmission of data from the sen-
sor to the sensor bridge. When the state of the switch
changes (whether or not there is a magnet pressed
against the switch), a packet is created and sent to
the camera. Similarly, the motion sensor’s PIR sen-
sor helps with the wireless transmission of messages

to the sensor bridge.

B. Sensor Bridge

Fig. 4. Labeled photo of sensor bridge board.

The sensor bridge board acts as the intermedi-
ary between the camera and the sensors. The an-
tenna receives the RF signals from the two sensor
boards and then processes the input using its ARM
TI CC1310 Microcontroller Unit (MCU). Unlike the
similar MCUs on the sensors, the firmware of that on
the sensor bridge board is proprietary to Wyze and
contains the bulk of the firmware of interest for our
reverse engineering team.

The MCU has 128 KB of flash memory and 20 KB
of SRAM. It also supports several protocols, includ-
ing IEEE 802.15.4g, 6LoWPAN, and proprietary RF
protocols [1], such as the proprietary protocol that
Wyze uses. The team’s research is mostly focused on
its RF protocol. By knowing exactly how the board
converts input from its antenna to control signals to
the mainboard, this opens up the possibility for a re-
play attack in which carefully curated signals can be
sent to exploit the system, a process detailed further
in later sections.

C. Mainboard

Fig. 5. Labeled photo of the camera mainboard.

The mainboard contains an Ingenic T20 MIPS
processor that runs proprietary Wyze firmware re-
sponsible for receiving the control packets from the
sensor board and relaying it over Wi-Fi to the main
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Wyze Applicaiton. This board also runs an embed-
ded Linux for which root access can be obtained us-
ing the open serial port that connects to the sensor
bridge. The team was able to interface with the board
directly by soldering headers to this port and crack-
ing the root password.

D. Technical Documents

Lastly, there are several technical documents that the
team is referencing. These include the TI CC13X0,
CC26X0 SimpleLink™ Wireless MCU Technical Ref-
erence Manual and the TI CC13X0, CC26X0 Soft-
ware Development Kit (SDK).

The technical manual contains information about
the CC1310 microcontroller in use in the sensor
bridge, contact sensor, and motion sensor of the Wyze
Cam V2 [1]. Specifically, the team is referencing the
manual for information regarding the radio: the RF
core, data queue usage, radio registers, and propri-
etary radio information. The technical manual has
helped the team discover more about the proprietary
radio commands, the packet format, and the different
command structures.

The SDK provides an application programming
interface (API) for the microcontroller. However,
most importantly, it includes sample code for the
API, giving several examples to cross-reference with
the camera’s disassembled firmware. By referencing
the SDK, the team has familiarized itself with the
uses and meanings of structures in the firmware’s
memory. This is especially useful when examining
and reverse-engineering the firmware. Finally, there
are several examples of RF protocols in the SDK,
showing possible implementations of packet transmis-
sion and reception [2].

III. Existing Vulnerabilities

Several vulnerabilities are discovered in the Wyze
camera system that could be exploited to leak users’
sensitive information. For instance, Bitdefender’s
vulnerability assessment of Wyze Camera revealed
that this device may be vulnerable to remote connec-
tion authentication bypass (CVE-2019-9564) which
occurs when client sends IOCtl command and NULL
value in place of ID 0x2710 to the device where au-
thentication code is already NULL, thus comparing
NULL to NULL would result in successful authenti-
cation [3]. Other vulnerabilities found by Bitdefender
include unauthenticated access to contents of the SD
card and remote code execution flaw caused by stack-
based buffer overflow (CVE-2019-12266) caused by
camera’s lack of checking mechanism for destination

buffer’s size when it comes to processing IOCtl with
0x2776 [3]. Other weakness found in Wyze camera
device is the fact that power consumption dramat-
ically increased in both idle and active state when
the device is experiencing distributed denial of ser-
vice (DDoS) attack compared to control and Man in
the Middle (MitM) attack group [4].

Although these vulnerabilities already exists
within the Wyze Camera system, the research team
discovered that Wyze camera system is susceptible to
a replay attack.

A Replay attack is one of the vulnerabilities in
the Wyze camera system. Replay attacks occur when
malicious actor is able to capture the messages and
retransmit them to the recipients [5]. To demonstrate
this vulnerability, the team first captured packets by
recording signals with GNU radio using the contact
and motion sensors. These captured packets were
then replayed back to the sensor bridge, using a Et-
tus USRP N210. The bridge would then send back an
ACK packet that indicates successful reception of the
replayed message. The first packet associated with
alert contains 4-hexadecimal character value repre-
senting increment counter. This counter is main-
tained in the sensor and incremented each time an
event alert (open/close, motion/no motion) occurs.
If the sensor is switched off, the 4-hexadecimal char-
acter value would reset to 0. When captured packets
were replayed, the 4-character field would return to
the value that was captured. To send arbitrary pack-
ets to the dongle, Universal Radio Hacker (URH)’s
generate functionality was used to modulate the sig-
nals.

Unsigned Wyze camera’s firmware is another fac-
tor contributing to the Wyze camera system’s suscep-
tibility. In embedded systems, firmware authors can
choose to enhance security posture by implementing
firmware signing. This can potentially prevent their
firmware from being modified or corrupted. The pro-
cess of signing a firmware involves the creation of
cryptographic hash of the target firmware which is
signed with a private key resulting in the signature
attached to the firmware image [6]. The team mod-
ified the stock firmware and were able to install it
onto the Wyze camera, indicating that it is not signed
by the vendor [7]. This is another vulnerability that
could be used to bypass security controls.

IV. Analysis

A. TX

The CC1310 allows for multiple modes of radio
transmission, however the Wyze developers chose
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to operate using it’s proprietary mode. In order
to prepare for packet transmission using cc1310’s
proprietary mode, the radio must be set up with
the CMD PROP RADIO DIV SETUP command.
To transmit a packet the TI CC13x0 utilizes the
CMD PROP TX ADV command (Advanced Trans-
mit Command) to allow for more flexible packet setup
outlined in [1].

Advanced Packet Format [1]
The Wyze developers chose to have the preamble
consists of a fixed 2-byte sequence, with the first bit
set to 0, ensuring proper synchronization between the
transmitter and receiver. The sync word is a 32-bit
value set to 0x5555904E, which serves as a unique
identifier that allows the packet engine to detect the
start of the packet. Following the sync word, a 16-
bit header is included to carry essential metadata
required for processing the packet. The length in-
formation is specified as 5 bytes, defining the size of
the payload. The payload itself is set to the sequence
0x07, 0x08, 0x40, 0x00, 0x21, representing the
actual data being transmitted. The cyclic redun-
dancy check (CRC) is appended to the end of the
packet to verify its integrity during transmission and
excludes sync word and header from the calculation.

Building off the previous semester’s work, references
to the rfc CMD PROP TX ADV s command struc-
ture was used to identify functions that corresponded
to RF Core operations.

Figure 7a: rfc CMD PROP TX ADV s Command
Fields:

Figure 7b: rfc CMD PROP TX ADV s Struct Val-
ues Sample

Certain fields of this command structure were im-
portant to identify as they corresponded to important
packet processing functionality. Using pPkt we can
idenfy the data being sent between modules, preTrig-
ger is helpful in determining the length of preamble
bytes and where the syncword starts in packet trans-
mission, pktLen / numHdrBits we can use to iden-
tify the length of payload / header data in a capture
of RF traffic, and pktConf & startConf are useful
in determining how the specific packet was manufac-
tured and what the redundancy checks encompass.

Description of packet fields [2]

As shown in the figure above, pPkt is a pointer to
the packet to be transmitted. This packet structure
is focused as part of the team’s effort to understand
the TX structure.

As shown in Figure 7b, pktLen’s value is 5h which
defines packet’s length as 5 bytes. numHdrBits’ value
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is 10h, indicating that Header is comprised of 2 bytes.
According to the manual, first bytes of the buffer
pointed to by the pPkt are header bytes [1]. Thus,
first 2 bytes of the buffer pointed by pPkt are header
bytes. Since the packet consists of 5 bytes, next 3
bytes consist of payload bytes.

Analysis of Function FUN 0000c7b8

This function appears in the external references
of the status field when PROP DONE OK sig-
nals successful operation, indicating normal com-
pletion. The main function initializes, validates,
and schedules tasks or packets in a real-time sys-
tem, ensuring integrity and responsiveness. It calcu-
lates timing using FUN_00014c3c and FUN_000145d0,
stores results in the task structure, and disables in-
terrupts during critical operations. Tasks are queued
via FUN_00014200, which updates timing and calls
FUN_00011684_CMP to insert tasks into a sorted
queue. FUN_000112a8_check0_TX validates the next
task, prioritizing the one with the earliest timing.
Future research into FUN_000112a8_check0_TX is
necessary to fully understand its functionality.

Analysis of Function FUN 000106d0 transmission info

Figure 8: Sample of FUN 000106d0 transmission info
function

This function referenced the buffer memory loca-
tions pointed by the pPkt. The ultimate goal in this
function was to understand the payloads. In Figure
8, lines 11-13 revealed that the function takes in 4
parameters. Investigating payload 1 flag (parameter
2) in line 53 as well as other functions that are refer-
encing FUN 000106d0 transmission info function re-
vealed that the parameter 2 acted as flag that would
determine the value of payload 1. Payload 2 is deter-
mined to be 0 in line 52.
Despite these findings, due to the limitations caused
by the need to further investigate certain parts of this
function to gain complete understanding, the future
goal for this function includes further investigation of
payload 3.

B. RX

One of the many functionalities the sensors in the
device have called micro-controllers include creating
messages. In the receiving part (RX), various ele-
ments, like managing addresses and handling the re-
ception queue, make sure the communication between
the device and the system is smooth and trustwor-
thy. The data queue acts like a conveyor belt, moving
packages (messages) between the radio frequency core
(RF CC1310) and the main brain of your device, the
CPU.

As the message travels through the RX chain,
which is like a series of stops, certain parts of the
message are removed. This ”stripping” process isn’t
limited to just between the CPU and RF; it happens
at different points within the device. It’s akin to
opening a package, extracting what’s necessary, and
passing along only the vital information. For the
semester, our goals is to understand how we found
data structures and be able to point to the first entry
of queue, code, etc, but also extend this knowledge.
By looking at different functions and understanding
more and more about the device and how it works,
we can we can have a better understanding for our
future goal, which is using Scapy to spoof the system.

Figure 9: rfc CMD PROP RX ADV s Command
Fields

Analysis of FunctionArray

Fig. 10: FunctionArray array being called under
FUN 0001f928

The FunctionArray is a collection of function
pointers, and its behavior is determined by a spe-
cific control function, FUN 0001f928. This func-
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tion first ensures that a calculated condition is met
before proceeding to execute one of the functions
from the array. The selection process relies on an in-
dex derived from another function, AddressCount,
which computes the index by iterating through a con-
trolled loop. This index determines one of six possi-
ble outcomes, each associated with specific entries in
the FunctionArray. By structuring this logic, the
system dynamically selects and executes operations
based on parameters passed during runtime. The
function AddressCount calculates the index by iter-
ating through a loop that increments local variable
count up to 6 times, in which it terminates at the
end. This way index becomes an integer that has a
maximum value of 6. After this, it gets passed into
FUN 0001f928 by multiplying it’s index value by 3.
This gives us 6 possible arrays inside of FunctionAr-
ray array: 5, 8, 11, 14, 17, 20.

Fig. 11: Examples from FunctionArray

So far the expected index value is 0 because the
AddressCount function’s goal is to count how many
times a while loop is iterated and terminates in under
one specific condition. Ultimately this leads to count
becoming 0 and the loop ending; applying the integer
into our local variable index.

Fig. 11.5: A majority of the function AddressCount
which shows how the index was found

As seen from here, the index value is found by
iterating through the function AddressCount. The
value loop pointer is first assigned the memory ad-
dress DAT 200023dc. The goal memory address
DAT 200023e8(integer value 8) is successfully as-
signed after moving 4 bytes by the line where loop
pointer variable is added integer 3.

Overall, the method fun Array will be dived in on
array 10 with the parameter 8.

Figure 12: Sample of FUN 0001f4f8 function

Function FUN 0001f4f8 is the expected method
being produced from FunArray (index 10). So far
variable 1 and 2 have been reversed engineered.
Var3 is 8 (found from the address). This function,
FUN 0001f828, searches through a predefined list of
pointers (PTR DAT 200023c4) to find a match for
the input parameter param 1. It temporarily disables
interrupts during the search for thread safety and re-
enables them before returning. If a match is found
within a maximum of two iterations, a pointer to
the matched entry is returned. Otherwise, it returns
NULL, indicating that the input parameter was not
found in the list. Var3 is hexadecimal 8 by finding
the value located at memory address DAT 20003aec.
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Fig. 13: Function FUN 0001f828 used for finding
Var1

This function, FUN 0001f828, searches through a
predefined list of pointers (PTR DAT 200023c4) to
find a match for the input parameter param 1. It
temporarily disables interrupts during the search for
thread safety and re-enables them before returning.
If a match is found within a maximum of two iter-
ations, a pointer to the matched entry is returned.
Otherwise, it returns NULL, indicating that the in-
put parameter was not found in the list.

Analysis of GREEN memset modified

Fig. 12: The definition of the GREEN memset modified
function.

The functionGREEN memset modified takes
a starting memory address, a value, and a length.
The function fills the memory space with a modi-
fied version of the provided value that was passed
in. The value argument ends up being concatenated
and expanded. It also aligns memory writes for larger
blocks of data efficiently.
The function is like a custom implementation of
memset with modifications. It sets the memory at a
specified address to a ”modified” version of the value
provided. Specifically, the value is transformed into
a ”concatenated” form (e.g., value + 1 concatenated
with itself), then repeatedly written to the memory
in chunks of different sizes for performance optimiza-
tion.
The function is optimized for performance in multiple
ways. First, it aligns the address to a 4-byte bound-

ary that minimizes misaligned memory access, which
is slower. It also writes in chunks (16, 8, 4 bytes) so it
ends up minimizing the number of memory write op-
erations. Finally, the function efficiently determines
how many bytes are left to be written and then pro-
cesses them in descending order of chunk size.

Analysis of the Queue Pop

Fig. 13: A screenshot of the queue pop function in
Ghidra with comments.

The above function, known as FUN00010fb8
queue pop?, works to ”pop” or advance a queue.
After checking the first byte in the packet, it then
disables interrupts to avoid concurrency issues and
ensure atomic access. The queue is advanced and
interrupts are re-enabled. Lastly, it performs some
sort of error or interrupt handling with the use of
two status indicators or flags.

Analysis of the RF Setup Function

One function, FUN 00004f58 setup rf system,
works to initialize the RF system. It sets up most
of this system, including global pointers, data queue
entries, and certain function calls, including the fre-
quency, chip type, and sync words.

After performing several calls to error-checking
and interrupt handling functions, this setup func-
tion initializes data fields and pointers. It then
calls several other functions related to setup:
FUN 00012188 setup command structs,
FUN 00014180 set global chip type and power,
and FUN 00012140 set synthesizer frequency.
These functions set up the command structs (in-
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cluding the pointers to the RX queue and output
structure and the sync words), declare the chip type
and power, and calculate the synthesizer frequency,
respectively. Specifically, the frequency must be as
close to possible to:
(frequency + fractFreq/65536) MHz
where frequency is the synthesizer frequency and
fractFreq is the fractional part of the frequency.

Fig. 14: A table containing the functions that call
the memcpy function and each value for length.

Additionally, the RF setup function contains
a call to FUN 000121d0 memcpy something.
This function seems to do something re-
lated to a memory copy and length compari-
son. Its first parameter is the length, which
could vary depending on which function calls
FUN 000121d0 memcpy something. The ta-
ble above shows each function that calls it and
the value that is passed into the length parameter.
FUN 000147c6 passes in its first parameter to the
length value, which had three separate occurrences:
234, 235, and 240.

Analysis of FUN 00006aac

The function FUN 00006aac appears to be one
that affects both the RX and TX systems in different
ways. While a complete analysis of this function has
not been completed, an sufficient amount of work
has been done so that a hypothesis can be formed.

Fig 15.1: FUN 00014544 calls on FUN 00006aac

As shown in the above image, the value of
param 1 is the immediate value getting passed into
FUN 00006aac. This made it critical to understand
both the contents and purpose of the parameter. Pa-
rameter 1 ended up being a value that indirectly
modified other values within other functions. Once
inside the function, the original value of param 1 is
not used in any meaningful capacity.

Fig 15.2: Shows where in FUN 00006aac the RX and
TX packets are modified

After traversing through the code, the system
reach’s the above chunk of code. The value of uVar3,
which is set by the function FUN 000065f4 not
shown above, is checked to see if its 0. The assump-
tion made is that if the value is not 0, an error has
occurred during the process. If the value is 0, then
the information used is correct. This will allow the
RX and TX systems to properly receive the informa-
tion. It is currently unknown what exactly happens
within the RX and TX systems. The team hopes to
find out more about the contents of the function in
future semesters.

Packet Processing
The 00002520 packet processing function works
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on the current packet that is at the top of the
RX queue. It was determined to be a function
of interest since it modifies values in and calculates
values from a packet in the RX queue. The packet
processing section is divided into four main sections,
which were determined based on the locations in the
function that have labels. At certain labels within
the function, the local variables are reset to the val-
ues stored in corresponding global variables. These
labels, each associated with a distinct phase of the
function’s behavior (error checking, setup, process-
ing, error handling,), divide the function into its four
primary processes.
The team initially used Ghidra to reverse engineer
the function code, before then transitioning to step-
ping through the code to reveal further information
about its behavior. This was achieved by first manu-
ally recording values in an Excel spreadsheet, then by
using Ghidra’s debugging tool to step through each
line of code and track the values stored in registers.
The team then transitioned to using JLink in order
to step through the code as it was actively running on
the camera using the remote test bed feature. This
method allowed the team to confirm the behavior of
the camera in real conditions. It also allowed for eas-
ier memory access and management using the Write
feature of JLink, which allowed the team to directly
write values into the camera’s memory, and theWReg
feature, which allowed the team to manipulate regis-
ter values. Using a combination of these methods, the
team was able to determine the following information
about the 00002520 packet processing function.
The team was able to analyze the overall structure
of the function, which is as follows:

1. Error Checking
The first section of the function ensures that
the radio is operating as expected before any
further work on the packet is completed. In or-
der to do this, it verifies based on expected
status codes and halt codes. If the radio
status is set to OK, the function will con-
tinue to operate as normal. This is checked
by verifying that the status attribute of
the rfc CMD PROP RX ADV s 2000237
is set to 0x3400, which corresponds to
the PROP DONE OK status. However,
if the status is set to an error or failure
mode, it will give control to the last sec-
tion of the function, which handles errors.
The following image shows all possible er-
ror codes and their corresponding status:

Fig. 15: A complete list of possible radio sta-
tuses.

2. Set Up
This next section of the function uses infor-
mation from the packet’s header to initialize
variables that will be used to perform calcula-
tions later in the function. The packet’s header
contains information regarding the structure
of the packet. This information includes the
length of the packet, whether or not whiten-
ing is enabled, and the length of the CRC.
The packet header is two bytes, with bits 0-
10 specifying the length of the packet, bit 11
corresponding to whether or not whitening is
applied, and bit 12 corresponding to the length
of the CRC. Currently, the values contained in
these fields for the packet in memory are as
follows:
Length: 0b101101, corresponding to a decimal
value of 0d45
Whitening: 1, meaning that whitening is ap-
plied
CRC: 0, meaning that the CRC length is 4 bytes

3. Processing
The next section of the function uses the val-
ues and variables that were set up and cal-
culated in the earlier section of the func-
tion to actually perform operations on the
packet payload. A few major functions that
are called in this section of the packet in-
clude the FUN00010fb8 queue pop? and
the 0000f934 GREEN edit value functions,
both of which were also called in the RX section
and have been discussed in detail earlier in the
paper. In the 00002520 packet processing
function, the FUN00010fb8 queue pop?
and the 0000f934 GREEN edit value func-
tion perform the same roles that they do in
the RX section: popping, or advancing, the
first element of the queue, and writing a value
to memory, respectively. Another major func-
tion in this section is FUN 00011684 CMP,
which compares two values, which are passed
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in as parameters to the function. This function
modifies the values passed in based on the re-
sults of the comparison before returning them.

4. Error Handling
The final section of this function serves to catch
any errors that may occur during error check-
ing, set up, or processing. It contains various
handlers that may be called earlier in the func-
tion, and if they are called, control is diverted
to this section of the packet processing function.

The team was also able to gain insight into how some
values in the payload are used throughout the func-
tion. This provides information into how the values
in the payload are determined, which may help the
team craft payloads for fuzzing in future work.
It has already been determined that the first two
bytes of the packet, which make up the packet header,
are bit-packed fields that contain information about
the packet payload. This information is then used
in the set up and processing sections of the func-
tion. Similarly, the first three bytes of the payload
also appear to be bit-packed fields that are used to
set values and determine the program’s control flow
throughout the function.
The first three bytes of the payload are copied from
the packet to a separate global variable, as seen in
the following two images:

Fig. 15: First five bytes of the packet copied to global
memory.

Fig. 16: Location of first five bytes of packet in
memory.
As seen in the image, the first two of these five bytes
correspond to the header and have values of 0x2d and
0x08. Both these bytes have been discussed in the
section of this paper that covers the set up portion of
the packet processing function. The following three
bytes are the first three bytes of the payload, and
have values of 0x61, 0x88, and 0x84.
These three bytes have various uses throughout the

function. The first two bytes of the payload are used
as an index and offset for a relative memory address
calculation, as seen in the following image:

Fig. 17: First two bytes of payload used as index
and offset for relative address calculation.
The third payload byte is also copied to the local
variable local 38 transmission payload, as seen in Fig
18. This local variable is passed in as the payload
parameter to the FUN 000106d0 transmission info
function, which sets the header and payload for the
packet to be transmitted by CMD PROP TX ADV.
This can be seen in Fig. 19.

Fig. 18: local 38 transmission payload variable is set
to the third byte of the payload.

Fig. 19: Third byte of the payload is passed into
the FUN 000106d0 transmission info function as the
payload parameter (line 637).
In addition to these uses, the first three payload
bytes are also used as bit-packed fields, with indi-
vidual bits in these bytes corresponding to different
flags that determine the control flow in the pro-
gram. For example the fifth bit of the first pay-
load byte is isolated, as seen in Fig. 20, and then
used as a flag that determines whether or not the
FUN 000106d0 transmission info function is called,
as seen in Fig. 21.

Fig. 20: Fifth bit of first payload byte being iso-
lated and set to DAT 20003ae5 transmission flag lo-
cal variable.

Fig. 20: Fifth bit of first payload byte being iso-
lated and set to DAT 20003ae5 transmission flag lo-
cal variable.

10



Fig. 19: Fifth bit of first payload byte stored in the-
DAT 20003ae5 transmission flag local variable being
used as transmission flag (line 628).
Future work on this function includes further explor-
ing the ways that the first three bytes of the pay-
load are used, particularly the individual bits in these
three bytes. By crafting a clear idea of how these
bytes are used, it will be possible to create payloads
that interact with the camera in specified, controlled
ways.

V. Conclusion

The purpose of this research is to explore how the
Wyze camera receives, transmits, and processes pack-
ets. This information will allow the team to better
understand the structure and semantic meaning of
the information contained in the packet, which will
then allow the team to spoof packets to send to the
camera. By purposefully sending malformed pack-
ets, the team can analyze how the camera behaves
on receiving unexpected inputs, which may provide
insights into potential vulnerabilities in the camera’s
code and behavior.
A long term goal of this project is to eventually make
the process of sending malformed packets and ana-
lyzing the camera’s behavior automatic. This is a
process called fuzzing. This process will allow the
team to send packets and analyze the camera’s be-
havior after receiving the packets faster and require
less manual effort. Furthermore, since fuzzing is an
automatic process, packets can continuously be sent
to the camera, which means that a larger range of
packets can be tested.
The final goal of this project is to compare the results
of fuzzing the packets automatically and manually
spoofing them. Since fuzzing is an automatic process,
it has the potential to save time and effort from man-
ually spoofing the packets. However, there is a lack of
in-depth research that considers using fuzzing on RF

data. If the results of fuzzing packets are compara-
ble to manually spoofing them, it means that fuzzing
may be a viable alternative to manual spoofing for
RF data, which would save time and effort on reverse
engineering.
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