
Wyze Camera Fall 2023

Michael Edoigiawerie, Varsha Jacob, Joshua Muehring, Spencer Redelman, Deniz Timurturkan

October 2023

Embedded Systems Cyber Security
Georgia Institute of Technology

Atlanta, Georgia

1 Abstract

This paper covers details about the Wyze Camera
and the Georgia Tech Embedded System Cyber Se-
curity’s research into the camera as of Fall 2023. The
goal of the research project is to exploit the Wyze
IP Camera, which can be done by manually reverse
engineering the camera’s code for receiving and trans-
mitting information. The overall goal of the project
is to reverse engineer the Wyze Camera’s RF proto-
cols in order to exploit it as a proof of concept. The
team will then try to automatically get these same
results through a process called fuzzing as a proof of
concept. The results of these two processes will then
be compared to see if fuzzing is a viable alternative
for manual reverse engineering RF devices.

2 Introduction

The Wyze Camera is an IoT (Internet of Things)
device that allows users to view remote locations
through the Wyze App or the Wyze Web View. Users
can set up the camera in their homes in order to have
a feed of their homes, pets, or children while they are
away. After setting up the camera, authenticating
and connecting the camera with their personal de-
vices, users are able to stream the camera’s view on
their personal devices.
However, both cameras and IoT devices in general
can bring many risks that are not yet fully taken se-
riously by the companies producing these devices and
the users. The Wyze Camera itself had vulnerabili-
ties that allowed users to connect to a device with-
out authentication, as well as bugs that showed users
other camera feeds on the Wyze Web View for a short
period of time. [1]
Furthermore, IoT devices in general bring along with
them many security risks that must be taken seri-
ously. IoT devices can pose security risks from the

device itself, from the transmission protocol used to
communicate between devices, and in the application
or website that connects to the device [2]. Further
adding to the impact of this is the fact that many
users of IoT devices are not always knowledgeable
or willing enough to take extra measures to mitigate
their risks.
For example, it is often recommended that IoT de-
vices use their own network or network segment, but
many users just add their devices to their home net-
works. Though this may be easier than setting up a
new network or sub-network, it may also mean that
the IoT devices are now running on the same network
that the user’s other devices are running on. This
means that if the IoT device gets hacked, it could al-
low the hacker to access sensitive data stored on the
network or on other devices on the network [3]. On
the other hand, another device on the network could
be able to hack into the IoT device. This is why it
is vital that IoT devices have strong security, since
many users themselves do not have the knowledge to
mitigate their own security risks. Thus, it is impor-
tant to find potential vulnerabilities in IoT, as well as
a way to automatically find vulnerabilities, in order to
better increase the security of the devices themselves
and decrease the burden of security on the users of
the devices, who may not have the knowledge, time,
or energy to take the necessary steps to protect their
data.

3 Device Description

The Wyze Camera works on data from two sensors,
the contact sensor and the motion sensor [4]. These
two peripheral sensors send their data to the sensor
bridge using wireless communication. The sensor
bridge then communicates with the camera’s proces-
sors through USB. The camera’s processors finally

1



use wifi in order to send the data to the Wyze server
and Wyze user application, which is available both
as a mobile app and as an online web service. This
communication can be seen in the image below:

Figure 1: A diagram detailing the Wyze camera’s
components and the communication between them.

The contact and motion sensors use wireless com-
munication to communicate with the sensor bridge.
It uses the TI CC1310 microcontroller, which sup-
ports a variety of data rates and modulation schemes.

Figure 2: The contact (left) and motion (right) sen-
sors on the Wyze IP Camera

Figure 3: Back (left) and front (right) of the sensor
bridge.

The TI CC1310 is a microcontroller composed of
two processors, as well as peripheral controllers. The
first processor, the ARM Cortex M3, is the main

processor. This processor is part of the the system-
side and runs the user application. This processor
also operates on the information from the TX and
RX packets. The second processor, the ARM Cortex
M0, is part of the radio-side and receives commands
from the M3 processor. This processor creates pack-
ets to send to the M3 processor. Each processor is
a separate system, but they work together and com-
municate with each other.

Figure 4: A diagram of the TI CC1310, its two pro-
cessors, and peripheral units.

The hardware of the Wyze IP camera includes the
Wyze Camera PCB, which runs embedded Linux.
It also contains a wifi board for communication be-
tween the camera and the user application, as well
as an open serial port with root permissions. It also
includes an SD card slot to save footage.

2



Figure 5: An image of the hardware of the Wyze IP
Camera daugherboard

4 Existing Vulnerabilities

Previous vulnerabilities have been found in the Wyze
Camera by various research teams. Some of these in-
clude the ability to bypass authentication and buffer
overflows, among others [5]. The Wyze Camera needs
a username and password to log into the device. The
camera then sends a verification code to the user’s
device to connect the two. However, one bug allows
for the authentication code to never be stored in the
camera’s memory, keeping the original NULL value
instead. Then, by passing in the NULL value as the
code, the camera will be linked to the device with-
out actually getting the correct authentication code.
Additionally, though the camera requires a password
to authenticate, the password is still crackable, espe-
cially with a weak password, which many users may
have.
Another vulnerability that has been found is a buffer
overflow during the authentication process in the
IOCtl (Input/Output Control). When the device gets
an input, the input includes the size of the payload.
However, the camera does not compare this value to
the size of its destination buffer, which means that a
large payload size will overflow the buffer and write
outside of its allocated space.[5]

5 Analysis

During our research, we were focused on reverse en-
gineering the camera’s TX and RX packet structure,
as well as reverse engineering the packet processing
code in order to see how the payloads are structured,
so that we are able to spoof a packet. The goal of our
research is to be able to exploit the camera as a proof
of concept by spoofing a packet, and the next steps
of the research include attempting to use fuzzing to
find vulnerabilities automatically.

Analysis of TX Protocol:
Packets from the Wyze camera are composed of a
Preamble, Header, Syncword, a payload, and an
optional CRC according to the TI CC13x0 ad-
vanced packet structure detailed in Figure 6. In
order to prepare for packet transmission, the ra-
dio must be set up to use proprietary mode with
the CMD PROP RADIO DIV SETUP command.
To transmit a packet using advanced modes the
TI CC13x0 utilizes the CMD PROP TX ADV com-
mand. [4]

Figure 6: From the TI technical manual, an image of
the available fields in the data packet

Importing the contents of the Wyze Camera SRAM
into GHRIDA data types are identifies and us-
ages of each type are determined. Researching
previous semester’s work the command structure
rfc CMD PROP TX ADV s was found to contain
the important information regarding this TX com-
mand and the packet(s) being sent. Our goal for the
rest of the semester was to investigate how/where this
information is populated and how to create a packet
in the same manner as to spoof an arbitrary packet
as well as reverse engineer the exact functionality im-
plemented by the creators of the Wyze Camera using
the de-compiled instructions in GHIDRA as well as
the specifications within the TI-CC13x0 manual.

Figure 7: rfc CMD PROP TX ADV s Command
Structure

3



Notable Fields:

Figure 8: a description of notable packet fields, as
seen in figure 6

Analysis of Init TX ADV Pkt Function:
We were able to locate this function by search-
ing for references of the TX command structure
rfc CMD PROP TX ADV s identified by the teams of
previous semesters. It appears to be integral in pop-
ulating notable fields such as .pPkt, and.syncword as
well as detailing which CS (Carrier Sense) Command
to send respective of an inputter function parameter,
specifically for the rfc CMD PROP TX ADV s structure.
Motivating the idea that this structure is important
to the TX RF transmission scheme.

Figure 9: Init TX ADV Function lines 59-84

Focusing on the population of the memory location
of the packet data (declaration on line 82) the data
structure from which the local variable is accessing is
pulled in from a global Poten PktPtr value (Line 59:
Raw_Pkt = (uint)*(ushort *)(Poten_PktPtr + 8)

). Located at address 200017bc, Poten PktPtr’s
address is incremented by 8 and stored in a local
Raw Pkt variable.
Utilizing a local variable on lines 71-72 the .pk-
tLen data is pulled out and stored in memory under
rfc CMD PROP TX ADV s.pktLen

Based on value of conditional on line 74, the ad-
dress representing the packet data is either stripped
of the pktLen value (line 78) or left with it, af-
ter bits are added flags are ”OR’d” in (lines 75
& 79) the value is then stored in memory under
rfc CMD PROP TX ADV s.pPkt.

Figure 10: Init TX ADV Function lines 112-134

Here the respective CS command is detailed and
stored under a local variable based off the func-
tion parameter COND RULE, renamed to represent
the Carrier Sense Conditional Rules (see below)

4



Figure 11: Conditional rules, as specified in the tech-
nical manual

With the major fields of rfc CMD PROP TX ADV s
populated and the specific command structure cho-
sen as to align with an inputted COND RULE, the
return value of Line 132 (FUN 000057d0) is used to
populate a global address renamed to PKT PTR TX

Analysis of FUN 0000b6a0 Function:
Found in the references of the TX command struc-
ture, this function modifies data values involved
in the radio operation command structure such as
commandNo, startTime, and startTrigger.

Figure 12: FUN 0000b6a0 lines 15-19

The assumption is that the radio must be set up
in a compatible mode (such as proprietary mode)
and the synthesizer programmed using CMD FS as ref-
erenced via the TI manual.

Figure 13: FUN 0000b6a0 lines 21-24

These lines of code directly modify the data
fields of startTime and startTrigger in the
RFC CMD PROP TX ADV s structure. It sets startTime,
which is responsible for absolute or relative start
time, to 0. In the next line with the data
type of struct 147, it contains four data fields:
triggerType, bEnaCmd, triggerNo, and pastTrig.
It modifies startTrigger by performing a bitwise
AND operation, clearing the first four bits and pre-
serving the next four bits, from least to most sig-
nificant. The triggerType, the first four bits, is
retained, while bEnaCmd, triggerNo, and pastTrig,
the last four bits, are set to 0

Figure 14: FUN 0000b6a0 lines 34-36

In these lines, iVar2 is being set by a function
call at address 000057D1h, named FUN 00057d0.
It passes in six parameters: Poten TX CallBack,
&RFC CMD PROP TX ADV s 20002330 (start of TX
structure, commandNo), address of a local variable,
address of a function, and the literals two and zero.

Figure 15: FUN 0000b6a0 lines 38-41

The if statement is checking if iVar2 is popu-
lated with data, which the team suspects is a com-
plete TX data entry combined together after the
FUN 00057d0 call. The next line sets a pointer to
a rfc CMD PROP RX ADV s 200024a4, which leads to
the RX structure, to a pointer of the address of the
rfc CMD PROP TX ADV S 20002378 structure.
Given the function’s involvement in both the TX and
RX structure, it may be a good candidate to keep
investigating.

Analysis of Shared FUN 000057d0 Function:
6 Parameter function called at the end
of FUN 00005d00 (Init TX ADV Pkt) and
FUN 0000b6a0. Parameters include a global vari-
able pointing to another callback function, Carrier
Sense Command previously determined and held in
PTR TX ADV variable, Address of empty local vari-
able (free memory space), Packets / TX commands
to be sent held in Rcv Adv Pkt, and some hardcoded
values 2 and 0.

Figure 16: Fun 000057d0 Header

Figure 17: Fun 000057d0 Lines 141-150

Given the Shared FUN 000057d0 Function’s involve-
ment with the TX structure and its operations, it
takes the inputted parameters and combines them
into a singular indexable data type along with spec-
ifying various RF Rat Module channel configurations.

Analysis of RX Protocol:
The sensors in the device has mini-managers called
micro-controllers that create messages. In the re-

5



ceiving part (RX), various elements, like managing
addresses and handling the reception queue, make
sure the communication between the device and the
system is smooth and trustworthy. The data queue
acts like a conveyor belt, moving packages (messages)
between the radio frequency core (RF CC1310) and
the main brain of your device, the CPU.

As the message travels through the RX chain,
which is like a series of stops, certain parts of the
message are removed. This ”stripping” process isn’t
limited to just between the CPU and RF; it happens
at different points within the device. It’s akin to
opening a package, extracting what’s necessary, and
passing along only the vital information. For the
semester, our goals is to understand how we found
data structures and be able to point to the first entry
of queue, code, etc, but also extend this knowledge.
By looking at different functions and understanding
more and more about the device and how it works,
we can we can have a better understanding for our
future goal, which is using Scapy to spoof the system.

Figure 18: Important variables and their pur-
pose/meanings:

Analysis of the matchingIndexFinder Func-
tion:

Figure 19: Image of the matchingIndexFinder Func-
tion

The matchingIndexFinder function is used for name

hash matching. First, it basically converts the passed
in string parameter into a unique sequence of num-
bers, which is done by the hashing algorithm imple-
mented in the AddressCount Function. If the string
is blank or empty, then by default there is no match,
so the function returns -1 which is equivalent to the
signed 2’s complement hex number 0xff. Otherwise,
the hash is used to index into pointers to functions
starting with the mathingIndexFinder+1 200023f0
function. This way, the dereferenced function would
return a match of the hash without ever seeing the ac-
tual contents. The result of the dereferenced function
would be stored into an int variable called ”uVar2”
and the function would end up returning this vari-
able containing the appropriate hash match. So, it
returns -2 if the function dereferenced from the index
variable has a NULL value.

Analysis of the AddressCount Function:

Figure 20: Image of the AddressCount Function

The function AddressCount is designed to system-
atically iterate through a set of pointers, inspecting
each to discern if any contains data that matches a
specified target address parameter. Executed within
a loop that iterates six times, the function evaluates
two primary conditions: firstly, if the variable at
the current address aligns with the target address,
it promptly returns the corresponding index; sec-
ondly, in the absence of a match after cycling through
the set of pointers, the function conclusively returns
255(0xff). During the iterative process, the loop dy-
namically calculates the address of the subsequent
pointer, enforces specific checks such as ensuring
the value at the address is not zero and confirming
matches with the target address. Importantly, the
incrementation of the index within the loop plays a

6



pivotal role in navigating through the set of point-
ers, effectively facilitating the search for a distinctive
data structure. In the event of a successful match,
the function provides valuable information about the
index where the match occurred; conversely, the re-
turn value of 0xff signals the absence of a match,
delivering a comprehensive mechanism for systemat-
ically querying the specified set of pointers for the
target address.

Analysis of the find address Function:

Figure 21: Image of find address function

This function’s importance stems from the vari-
able that is shared by both this function and the
AddressCount function (PTR DAT 200023c4). The
find address function is similar is to the Address-
Count function, except this time, it checks if there is
a value that contains the same address as the passed
in parameter. If there is a matching address or if the
address stores nothing, then return the address. Oth-
erwise, a null address is returned. In lines 20-33, the
address to the next pointer is calculated and the data
is stored in the ”value” variable. So if the value is
null, the target address is stored in the dereferenced
address pointer. Afterwards, the fifth element of the
pointer is set to null then the pass control function
is called. What is known so far is that the func-
tion passes control to another destination function,
and it returns the entry point address of the current
destination function. The return value (the current
destination function address) from pass control gets
stored in the ”puVar1” variable. If ”puVar1” isn’t
null, then interrupts are enabled and the address is
returned. Otherwise, the request failure? function

would check if there any issue with the pass control
function in its attempt to fetch the entry point ad-
dress. In lines 34-36. It is shown that there is a
conditional statement that checks if the ”value” vari-
able is equal to the target address. If so, we jump
to the LAB 0001f58a label to enable interrupts and
return the address. Otherwise, the whole procedure
restarts until the ”iVar2” variable is equal to zero
(the address eventually gets returned).

Analysis of functions 000048e4 packet swi-
tch Green and 00014bd8 GPIO read in RED
Given the function’s involvement with the RX struc-
ture and its operations, it is a critical compo- nent
for further analysis.

Analysis of 00002520 packet processing Func-
tion:
The 00002520 packet processing function is used to
process and analyze the data packet received by the
camera. As mentioned earlier in this paper, the data
transmitted by the camera is stored in a queue, and
this function is called on the current data packet in
the queue. The information in the data packet is
arranged per the IEEE 802.15.4g format, of which
there are several modes available.

Figure 22: Modes available in IEEE 802.15.4g format

The Wyze Camera uses the last mode (111), which
is the most flexible. As shown in the technical man-
ual, the data packet will have a CRC of either 16
or 32 bits. Whitening, the process of making the
output evenly distributed, is also available. Whiten-
ing causes the radio to output more evenly across
its bandwidth, which allows the radio to run at a
higher power without breaking FCC guidelines [6].
The overall structure of the function is as follows:

1. Error checking: the function ensures that the
inputs are valid, and that it has not timed out
or stopped. If there are any error conditions

7



found, it uses labels to go to the last part of
the function, which handles various errors.

2. Setup: the function uses information from the
packet header to set up variables and state vari-
ables that will be used later during packet pro-
cessing.

3. Processing: the function uses the previously de-
fined variables to process the payload of the
data packet. This function will be explored fur-
ther later in this paper.

4. Error handling: as mentioned earlier, the final
part of the function includes code to handle
various errors that occur either in the begin-
ning of the function during error checking or
later throughout the function in cases of vari-
ous exceptions that may occur.

Figure 23: An example of error handling code

Figure 24: The error handlers being
called within the processing section of the
2520 packet processing function

Each of these portions of the
00002520 packet processing function will be explored
more in depth in this paper.

1. Error Checking
As mentioned earlier, the first portion of the function
checks various error codes to see if any of them are
true. In this case, it will call an error handling code.
Some notable checks include looking at the status of

the radio. The technical manual provides a list of
status codes that may be checked before processing
a new packet.

Figure 25: Status options as specified in the technical
manual
In the code of the 00002520 packet processing func-
tion, there are checks for various status codes in order
to ensure that the packets are ready for processing.
An example is seen in the following image:

Figure 26: Examples of the 00002520 packet processing
function checking status codes to ensure correct op-
eration

In these lines of code, the function is checking if
the radio status is 0x3400, which corresponds to
the OK radio status from the technical manual, the
0x3401 status, which corresponds to the Timeout
status in the technical manual, meaning that the end
trigger occurred before the syncword was found, and
the 0x3404 status, which corresponds to the stopped
status.

2. Set Up:
While processing the packet, the IEEE 802.15.4g pro-
vides a framework for the packet’s information. In
the setup portion of the function, the packet header
is used to determine information about the packet.
The framework specifies that 11 bits of the packet
will be the length of the packet.

Figure 27: This image shows where the packet is
stored, as well as retrieving the length of the packet
from the first 11 bits of the header.

Bit 12 specifies if the CRC is 2 bytes or 4 bytes.

8



This information is also used later to determine the
length of the packet payload.

Figure 28: An image of code checking the length of
the CRC and calculating the packet length by remov-
ing either 4 bytes for a 32-bit CRC, or 2 bytes for a
16-bit CRC

Finally, bit 15 determines whether the packet
contains a payload or if it is just the header.

Figure 29: An image of the code checking bit 15
of the packet header to see if the packet contains a
payload, or if it is only the packet header.

Therefore, a representation of a possi-
blepacket header may look as follows:

Figure 30: An image of a possible packet header.
In this image, the orange bits represent the length,
the green represents the CRC, the purple represents
whitening, and the yellow represents whether or not
the packet includes a payload or not.

Also included in the setup is a pointer to the data
packet queue, which, by following the pointer, will
lead to a data packet stored in memory. This data
packet can be used as an example to apply the cal-
culations done in the set up and processing stages of
the 00002520 packet processing function.

Figure 31: An image of the data packet contained in
memory.

As seen in the image, the data packet is broken
down into multiple parts, including the packet

header, which is used in this portion of the
00002520 packet processing function, as well as the
data contained in the packet, the RSSI, and the
timestamp.
The packet header is 0x2d08, and this packet header
will be used to provide an example of the computa-
tions completed in the set up portion of the function.
The packet header in binary is 0b0010110100001000.
Thus, the first 11 bits, which represent the length
of the packet, are 0b000010110100, or 180 in deci-
mal. Note that there are two important lengths that
are used throughout the function, the first being the
length of the entire packet, and the second being the
length of the packet without the CRC.
Bit 12 is 1, meaning that the packet includes a 32-bit
CRC. This means that the total length of the packet
is 180 bits, and the packet without the CRC is 148
bits. Bit 15 is 0, meaning that the packet contains a
payload and is not just the header.
Also included in this portion of the function are set-
ting up other variables in order to later be processed
and ensuring that the packet is in the correct for-
mat. The set up also includes checking the length
of the packet to see if it is less than the maximum
payload, and if so, the modified packet without the
CRC is passed into another function that changes
the order of the bits from big endian to little endian.
The function also uses information from the packet
header to set up state variables that will be used
later throughout the function for calculations.

Figure 32: An example state variable,
DAT 2003a4c state, is set to either 5 (line 199) or 6
(line 219) depending on information from the packet’s
header.

After setting up the relevant variables, the function
then moves to actually processing the packet payload.

3. Processing
As mentioned earlier, this portion of the function
uses the information and variables set up in the pre-
vious portion of the function to run computations
on the data packet itself. This portion of the func-
tion starts at LAB 00002a00 Processing, as this is
where the variables are reset to their original values.

9



Figure 33: An image of the beginning of
LAB 00002a00 Processing, and where the payload
processing portion begins.

As seen in the image, on lines 360 and 364, local
variables Transmit pkt length and packet first byte
are reset to their corresponding data variables. This
is necessary as earlier during the set up portion of the
00002520 packet processing function, they may have
been set to other variables as part of the calculations
that were done. Resetting these variables to their
corresponding data variables points to their values
being reset for this portion of the function.
Each line of this section of the
00002520 packet processing function was then ana-
lyzed individually, keeping note of the updated val-
ues. This was done by using the packet data stored
in memory, as seen in a previous image, in order to
explore how the code is processing the information
stored in the data packet.
The following image is a snippet from the processing
portion of the 0002520 packet processing function
that contains a few lines of code that will be worked
through as an example.

Figure 34: Image of the beginning of the processing
portion of the 00002520 packet processing function

The first and second line reset the packet first byte
and uVar9 prefix local variables to their original data
values, as mentioned earlier. The third line sets
puVar6 to the value of the packet first byte data
variable plus 28. At this point the packet first byte
holds 0x2d, which corresponds to 45 in decimal.
45 + 28 = 73, so puVar6 now holds a value of 73.
On the fourth line, the local variable
DAT 20003a50 packet first byte variable at index 1
is set to puVar6, which was just calculated to be
73. 73 in binary is 0b1001001. Changing the value
at index 1 results in the packet header becoming
0b0111011010001000. This translates to 0x7688.
This process was followed for other lines in the
00002520 packet processing function. All of the code
worked through thus far can be found here.

4. Error Handling
The final component of the function includes error
handlers that are called whenever the function runs
into an error or exception case during its error check-
ing, set up, or processing phases.

Figure 35: Example of a call to an error handler (top)
and its corresponding handler code (bottom).

Many of the error handlers in this function involve
calls to enable interrupts. The interrupts available
can be found in the technical manual:

Figure 36: A chart of the possible interrupts that
may be called.

6 Conclusion

The purpose of this research is to gain a better un-
derstanding of how the Wyze Camera transmits and
receives information. By reverse engineering the cam-
era’s TX, RX, and packet-processing protocols, we
can learn more about what information the camera
expects to receive and transmit. With this informa-
tion, we can find potential vulnerabilities by looking
to see how the camera reacts to bad or malformed
data. Using this information, we can create a base-
line for how we expect the camera to react to different
data.
Since manually reverse engineering a process can be
extremely time consuming, it is also very impor-
tant to try to use an automatic process to learn
more about a device’s vulnerabilities. This can be
accomplished through a process called fuzzing. In
fuzzing, a computer continuously and automatically
sends poor data to an external device while monitor-
ing and recording its output to the data [7]. This

10

https://github.gatech.edu/Embedded-System-Cyber-Security-VIP/VIP_ESCS_Fall_2023/wiki/Wyze-Documentation/wyze_packet_processing.pdf


allows for a constant monitoring of the device’s reac-
tions to the data, which can then be analyzed to look
for exceptions, crashes, and other signs of vulnerabil-
ities. Since this process occurs automatically, it is a
much more efficient way to find vulnerabilities than
manually reverse engineering the device.
The end goal of this research project is to use the
results of the manual reverse engineering to create
a baseline for the Wyze Camera’s output to various
data forms. Then, by fuzzing the data and compar-
ing the output of this to the results from manually
reverse engineering the data, the research team can
learn more about whether or not fuzzing is a viable
process for finding vulnerabilities, which will greatly
increase the efficiency of finding vulnerabilities in IoT
devices.

7 References

[1] Peters, J. (2023, September 8). Your
wyze webcam might have let other own-
ers peek into your House. The Verge.
https://www.theverge.com/2023/9/8/23865255/wyze-
security-camera-feeds-web-view-issue

[2] 8 internet of things threats and risks to be
aware of. SecurityScorecard. (2021, August
4). https://securityscorecard.com/blog/internet-of-
things-threats-and-risks/
[3] Cybtech. (2022, September 22). Home se-
curity: Why you should put IOT devices on
a guest Wi-Fi Network. Dual Layer IT So-
lutions LTD. https://www.duallayerit.com/home-
security-why-you-should-put-iot-devices-on-a-guest-
wi-fi-network/).
[4] Texas Instruments, “Cc13x0, cc26x0 sim-
plelinkTM wireless mcu technical reference manual,”
Texas Instruments, Feb 2015.
[5] Security vulnerabilities identified in Wyze Cam
IOT device - bitdefender. Bitdefender. (2022, March
29). https://www.bitdefender.com/files/News/CaseStudies/
study/413/Bitdefender-PR-Whitepaper-WCam-
creat5991-en-EN.pdf
[6] Christiansen, G. (n.d.). DN509 –
Data Whitening and random TX mode.
https://www.ti.com/lit/an/swra322/swra322.pdf
[7] What is Fuzz Testing and how does it work?. Syn-
opsys. (n.d.). https://www.synopsys.com/glossary/what-
is-fuzz-testing.html

11


	Abstract
	Introduction
	Device Description
	Existing Vulnerabilities
	Analysis
	Conclusion
	References

