
SWIFT Wireless Fire Alarm System Analysis
Drew Petry (Advisor)
Research Engineer II

Georgia Tech Research Institute
Atlanta, Georgia, United States

drew.petry@gtri.gatech.edu

Garrett Brown (Advisor)
Research Scientist I

Georgia Tech Research Institute
Atlanta, Georgia, United States
garrett.brown@gtri.gatech.edu

Trey Durden
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

tdurden8@gatech.edu

Madelyn Novelli
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

mnovelli3@gatech.edu

Darshan Singh
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

dsingh93@gatech.edu

Wolf Helm
University of North Georgia

Dahlonega, Georgia, United States
wchelm6495@ung.edu

Bryan Casalini
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

bcasalini3@gatech.edu

Abstract—SWIFT (Smart Wireless Integrated Fire Technol-
ogy) is a line of fire alarm devices produced by Honeywell. The
product line consists of many different devices like wireless smoke
and heat detectors, pull stations, alarms, as well as monitor-
ing software and control panels. SWIFT devices communicate
wirelessly, reducing the need for extensive cabling and conduits.
This is marketed to simplify installation and allows for flexible
placement of devices. Unfortunately wireless communication can
be vulnerable to hacking or tampering, especially if proper
security measures are not implemented. Unauthorized access to
the system could potentially compromise its functionality or lead
to false alarms. This study aims to investigate the vulnerabilities
of the Honeywell SWIFT system by reverse engineering the
systems firmware, and targeting it with precise attacks.

I. SYSTEM INTRODUCTION

Fire alarm systems play a critical role in safeguarding
lives and property by promptly alerting building occupants
and local fire authorities to the immediate danger of a fire.
Traditionally, these systems have relied on physical wiring
to connect detection nodes, notification devices, and the fire
alarm control panel (FACP). However, wired systems present
various limitations, including reduced detector sensitivity over
time and complexities in system modification and expansion.

To address these challenges, companies like Honeywell have
begun developing wireless fire alarm systems that have signif-
icantly improved fire safety technology. Honeywell’s specific
system is known as the SWIFT (Smart Wireless Integrated
Fire Technology) System and it offers a blend of wired and
wireless capabilities to enhance flexibility and scalability while
maintaining reliability. The SWIFT system uses a gateway
device to control the the wireless mesh network and integrate
it with the original wired system. Due to its critical nature,
gateway is the primary focus of this project [1].

The gateway contains two processors: the SLC (Signaling
Line Circuit) processor and the RF (Radio Frequency) proces-

sor. Both processors communicate with each other through a
UART (Universal asynchronous receiver-transmitter) channel.
The SLC processor is responsible for interfacing with the
wired devices and managing communication with the physical
SLC line. The RF processor manages the wireless mesh net-
work, relays wireless device information to the SLC processor,
and handles wireless communication. Additionally the gateway
has three firmware files that are essential for the operation
of the gateway and its components, the bootloader firmware,
RF firmware, and SLC firmware [2]. Reverse engineering
these files could provide us with valuable information on the
gateway and will help us achieve our goal of gaining control
over the system.

II. PREVIOUS RESEARCH

The previous teams were able to obtain information on
various Node Type variables and their corresponding values
in memory from the SWIFT Tools compatibility software.
Additionally, the teams proposed and designed a surrogate
device to send spoofed SLC messages using an Adurino
unit and various supporting hardware modules to handle the
difference in voltages between the two devices. The teams also
wrote code to copy the voltage behavior of the SLC device
output they observed while testing. Finally, the teams found
and confirmed that the SLC sent messages in 17-bit intervals,
which corresponded to the FlashScan patent [3] describing
the 17-bit address word and command word combination that
makes up SLC messages.

III. AES ENCRYPTION

A. Background

Encryption is used to conceal information; it hides infor-
mation in plain sight. A key, which is a group of values, is
used to transform plaintext (the text humans can understand)



Fig. 1. AES Key Expansion to encrypt plaintext
[6]

into ciphertext. Ciphertext looks random on purpose. It cannot
be understood unless the decryption key and the encryption
method is known. There are many different encryption algo-
rithms, but the one that the MSP430 microcontroller uses is the
widely accepted Advanced Encryption Standard (AES) also
known as Rijndael [4].

There are different AES modes depending on how blocks
are manipulated. Blocks are fixed sized segments of ciphertext
or plaintext. There are different ways these blocks can be
manipulated during the encryption and decryption process:
chaining, flipping, extending, boolean operations, etc... Hence,
the many AES variations: Electronic Codebook, Cipher Block
Chaining, Cipher Feedback mode, Output Feedback Mode, and
Counter Mode [5]. The algorithm found in the RF Gateway
Binary used the Electronic Codebook version with a 128-
bit key. 128 bits is the shortest conventional key length that
can be used for AES. The other options are 192 and 256
bits. Reasoning for using the shortest key may have been
to save on power consumption and speed to optimize the
microprocessor’s performance.

B. AES Encryption and Decryption Function

Without getting into too much detail, notice that the 128-
bit key is expanded to the size of the plaintext block, so that
each part of the plaintext is encrypted with a different round
key. This highlights the security of the algorithm, but is also
noteworthy because this was a key feature in deciphering that
the function being reversed is AES.

C. AES Key

Fortunately, AES encryption uses the same key to encrypt
and decrypt data, so finding the encryption key is the same
as finding the decryption key. The AES function can encrypt
or decrypt data depending on whether the 3rd argument is set
or cleared respectively. The second argument is the AES key,
which was pulled from non volatile memory.

Fig. 2. Ghidra Call Graph: Incoming Function calls to AES encrypt decrypt

AES Key: ”b8 dc 59 86 19 79 9d 79 41 de 21 97 1b b9 54
69”

To further verify that this is the encryption key, this key was
searched for and found in a similar context in the pull station
binary. It makes sense that key was also found in the other
device’s firmware because they need the key to understand any
encrypted messages sent from the gateway.

D. Encryption and Decryption in Context

More is being discovered about the context under which
encryption or decryption happens. Referring to the call graph
in figure 2, the three functions on the left call the AES function
to encrypt data, while the function on the right calls AES to
decrypt data.

Currently is seems that encryption is called based on a
loop in FUN 0000bd06 that checks that the transceiver’s FIFO
queue is not empty, implying that packets relating to an RF
message are what is being encrypted. The team is still actively
searching for what messages are encrypted and which are left
unencrypted.

E. Debugging Results

At the beginning of the gateway’s normal execution
FUN 00221d0 encrypts data first each time. The message is
16 bytes long: ”17 04 10 19 01 02 7f 01 08 0d 74 0d 00 00
96 35”. When the debugger is fixed and the stack trace can
be analyzed, it will be crucial to figure out when this specific
message is decrypted and parsed out for use. Although this
endpoint was fruitless, the debugging results do confirm that
the AES key is copied to a location in ram and is manipulated
in place to become a round key the same length as the data
being encrypted or decrypted.

IV. FLASH MEMORY

The flash peripheral is pervasive in its influence on the
MSP430’s operating capabilities. It is used to write variables
to memory and efficiently erase parts of memory at differ-
ent granularities. Flash memory is organized into banks and
subsections. Depending on what value is written to the flash
control register (FCTL), segments, a single memory bank, or
all memory banks can be erased.

Because the MSP430 has interrupts that can influence
control flow, safety measures are in place such that the flash



Fig. 3. Ghidra Call Graph: Outgoing methods for flash Write

memory is treated as a shared resource and locked so that
only one flash operation can happen at a time. Hence, why
the await Flash function or similar code is identified wherever
the FCTL register is used.

There are four different functions whose sole function is
to write to memory using the flash peripheral. Not all of
them use the await Flash function, which polls the third flash
control register; however, if they don’t call this function they
still use the same polling logic inline. Functions flash Write
and flash Write2 are indirectly called by FUN 0000d506.
FUN 0000d506 is a function that is a directly called by
firmware’s entry point. One possible reason these functions
are used could be to optimize startup time. Both operate on
smaller regions of memory and flash Write has the potential to
use a ”Smart Write” feature. This feature speeds up writing to
flash such that ”program time is shortened” [7] at the potential
expense of accuracy, which must be checked separately.

The other flash write functions, flash Write3 and
flash Write4, are called much more frequently by a variety of
different functions. The most important incoming function at
this point is Config Transceiver. In Config Transceiver, the
dominating code block that influences what areas of memory
are erased and then written to prints ”COMMAND 3R”
to USCI A0. From this code block one of four code
blocks, whom each call flash Erase and flash Write3 and
or flash Write4, is traversed based on what could be an
argument to ”COMMAND 3R”.

Current and past research has not focused on the fire alarm
control panel; however, that location or a external debugger a
developer attached to the device could be the source of these
mysterious commands. The device can accept these commands
when it is in Factory Mode. Factory Mode has not been docu-
mented, but it is a string found nearby where commands can be
input via USCI A0 (see function read str from USCI A0).

V. TIMER PERIPHERAL

This device has two timer modules whose purpose is to
generate interrupts. In this case, the module configured is
Timer A3, also known as Timer 1 to the device. The timer has
a control register that sets its mode. The mode it is referencing
tells whether a counter register is incremented or decremented
with a clock relative to a maximum or minimum value set in a
capture control register. The counter register changes based on
clock cycles; the rate at which this happens can be changed by

Fig. 4. Decompiled view of FUN 0003bf9e

altering bits in the timer’s control register to divide the clock
by some power of two.

There are two functions aptly named
await TA1 Counter Threshold that take a maximum value
as an argument and poll the capture control register until an
interrupt flag is set. After recognizing that the interrupt has
been asserted the function returns. This essentially means that
these functions behave similarly to how the sleep system call
would behave in various high-level languages.

They are normally called after various peripherals ports
have be modified like in FUN 0003bf9e in figure 4 where
USCI B0 is being altered. This makes sense because it takes
time to write those values so a certain time buffer is necessary
to prevent errors even at the expense of slowing down the
operating speed.

VI. WATCHDOG TIMER

This module restarts the system if a ”software problem”
occurs or it can be used to generate interrupts at regular
time intervals. It can also be temporarily disabled to conserve
power. In this context, the Watchdog controller can only be
changed to one of seven different values. One value stops the
timer, the next four change the rate intervals interrupts happen
at, and the last two values take the device out of active mode.

Given a clock source operating at 32.768 kHz, the timer
intervals represented will generate interrupts every 1.95ms, 1s,
16s, or 4m:16s.

VII. DMA

Direct memory access is a way to move memory around
without using the CPU. Because it doesn’t need the CPU,
less power is used and the CPU can spend its time accom-
plishing other tasks like manipulating the other peripherals.
The MSP430 has eight different transfer channels or different
paths along which this memory movement can happen [7].

There are two separate functions that setup DMA0 and
DMA1 channels. The DMA is setup the exact same way for
both of them; however, the only difference are some memory



locations where the data is moving from one spot in RAM
to another spot in RAM. Both functions setup the DMA such
that 200 bytes are moved; however, the 200 byte arrays overlap
in RAM implying that these functions are called at different
times and under different circumstances. There is a path from
the entry point to both functions. Future efforts in dynamic
analysis would be useful to see if either or both of these
functions are used, when they are used, and what data they
are moving.

VIII. CONFIGURING PORT MAPPING

While doing general analysis of the firmware, the team was
able to identify a function responsible for configuring the port
mapping for some of the ports on the gateway. Called near the
firmware’s entry point the function configure port mapping
is responsible for setting up Port 1,2,3 and 4. The port
pin is switched from a general purpose I/O to the selected
peripheral/secondary function by setting the corresponding
PxSEL.y bit to a 1 from a 0. If the input or the output function
of the port is used it is typically determined by the setting the
PxDIR.y bit. If PxDIR.y = 0, the pin is an input, if PxDIR.y =
1, the pin is an output. The function then makes three outputs
to port 4 spaced apart by three timer calls. This is likely a
test/setup output for when the device is first starting to run.

IX. CONTROL FLOW FIX

Ghidra had difficulty analyzing non-returning function lead-
ing to decompilation issues. This resulted in the binary being
sparse in terms of defined functions. Statistics were gathered
by running Tarjan’s strongly connected components algorithm
on the binary before and after the fix. The original binary
had 1,652 functions, 9,548 code blocks, and 7,496 strongly
connected components where the largest component had 81
code blocks in it. The new binary has 2,305 functions, 14,804
code blocks, and 10,813 strongly connected components where
the largest component has 202 code blocks in it. The difference
can be visually seen in figure 5.

A. Hidden Strings

Fixing the control flow analysis revealed almost 1,000
more functions, many of which are obfuscated calls to
Write Char to USCI A0. Tracing the program and concate-
nating the characters reveals strings. For example, observe the
string ”WINCESP2” in figure 6. Windows CE is a Windows
operating system meant for embedded devices. SP2 means
service pack two, which is usually how Windows labels major
updates to their OS’s. The MSP430 definitely does not have a
Windows OS, but it may indicate the presence of an external
tool connected to the device during the development of it’s
firmware. Future work will be done to log the strings being
printed as the gateway is running.

X. RF BACKDOOR ATTACK

A. Background

One attack that the team has been working towards is imple-
menting a backdoor attack into the gateway. A backdoor would

Fig. 5. Ghidra Defined Functions Heatmap Before and After Analysis Change

allow malicious individuals direct access the gateway while
bypassing its authentication methods. Past work has been ded-
icated to investigating the RF chips message reception mecha-
nism. Having a full understanding of how RF message recep-
tion worked on the gateway would be a significant goal for the
team, as it would allow them to edit the range of messages
the gateway can parse. Currently the team understands that
the chip primarily uses the Do stuff and wait payload ready
function for message reception. Its job is to constantly loop
while checking to see if a payload has been received and
is ready to be read. Once the payload is ready to be
read, The do stuff and wait payload ready calls the function
put fifo at 461d and verify crc to store bytes about the mes-
sage at 0x461d and 0x471c and also verify the calculating the
payloads CRC and comparing it to the expected CRC value. If
the CRC is valid the payload-waiting loop is broken, if not, the



Fig. 6. Function with obfuscated calls that prints Win CE SP2

function attempts to improve its signal strength by restarting
the transceiver.

While the team has a good understanding of the payload
reception mechanism of the RF firmware, there is little under-
standing of how the gateway retrieves the message type and
commands from received package for further use. Currently
we understand that the functions that that parse the payloads
are likely highly ingrained with the functions that have already
been analyzed; However, most attempts to reverse engineer
them have been unsuccessful [8].

B. RF Payload Parsing

Upon investigation, there doesn’t seem to be a function
called within the Do stuff and wait payload ready function
that parses the messages, so there is a high chance that
the message parsing function may be integrated elsewhere.
Currently the team has identified a function that could po-
tentially be related to the parsing of the messages. The
function interesting 2nd payload reception func seems to be
similar to the do stuff and wait payload ready function in
that it seems to receive a message from the USCI B0 and
uses the writes data out SPIB0 to RF Chip at Reg func-
tion to interact with the transceiver registers. The func-
tion has three features that one would expect to see
in a function that interacts with a packet. It first, calls
the Read from transceiver via UCB0 to retrieve the packet,
then it checks the packet length to ensure that it is
not to large, and finally it seems to store each byte of
the packet to the RX Packet Arr Array. There a couple
of differences between the 2nd payload reception func and
do stuff and wait payload ready. One such difference being
that there is no verify CRC check in this function. This could
be a significant vulnerability as the data received by this

function gets stored in the exact same location as the packets
received in Do stuff and wait payload ready.

There is a possibility that this function could be used
find a function that is responsible for parsing pack-
ets in the firmware. Since this function as well as
do stuff and wait payload ready store the received RX pack-
ets at the same exact location. If we can find a connection
between this function and Do Stuff and wait then we may be
able to identify where the payloads received by these two func-
tions get parsed. The interesting 2nd payload reception func
function should definitely be heavily looked at in the future.

C. Data Integrity Checks

It is also of the utmost importance to ensure data integrity
by searching for any possible security issues or vulnerabilities
that might leave a device susceptible to attackers. One such
time this might occur is in the bootloader, or startup, mode.
The purpose of this mode is to initialize the hardware and
load the main firmware into the device’s RAM. Given that
the bootloader mode is executed first, it represents a prime
target for attackers looking to manipulate the early onset of
the firmware loading process, which could then cascade into
detrimental effects on the entire system’s functionality and
security.

Due to the fact that our investigation primarily targets
vulnerabilities within the device, we carefully scrutinized the
entry point of the bootloader located in the address range
0x00001000-0x000017ff in the RAM. A significant finding
from our investigation was the absence of data integrity checks
in this mode. Data integrity checks, such as checksums, are
especially vital to verify that the firmware being loaded has not
been tampered with, and that the firmware remains unaltered
from its intended state. Checksums are values derived from a
set of a data. To calculate this value, an algorithm is chosen
that fits the needs and scope of the data being verified. Essen-
tially, this value helps in detecting whether the data has been
corrupted or modified either intentionally or even accidentally.
Some checksum functions implemented in previous firmware
versions include checksum, checksum calc then dma, check-
sum result, and checksum related?. Despite the recognized
importance of such functions, our current team goals do not
align with developing or enhancing checksum capabilities.
Instead, our focus is on identifying and exploiting these found
vulnerabilities within the firmware. In turn, this will help us
better understand any potential security weaknesses that need
addressing in future developments.

D. Cyclic Redundancy Checks

Although these checksum functions may not exist in this
version any longer, there are Cyclic Redundancy Checks
(CRC) periodically scattered amongst the code. For instance,
a function entitled Perform CRC is performed twice when
verifying regions of memory in the firmware. According to
the user guide, a CRC check will provide a signature for
any given data sequence. There are four registers at play in
the operation of these checks: CRC Data In (CRCDI), CRC



Fig. 7. The active registers when performing a CRC check

Data In Reverse Byte (CRCDIRB), CRC Initialization and
Result (CRCINIRES), and CRC Result Reverse (CRCRESR).
As seen in Figure 7, the CRC generator is first initialized
by writing a 16-bit word to the CRCINIRES register, and
any data that should be including in the calculation must be
written to the CRCDI or CRCDIRB registers in the same order
that the original CRC signature was calculated. The guide
states, ”The actual signature can be read from the CRCINIRES
register to compare the computed checksum with the expected
checksum.” The checksum is stored in memory and used
to check the correctness of the result found from the CRC
calculation.

XI. ENTRY POINT

A. Background

In this section, we focus on the examination of the firmware
entry points in the device, which are particularly critical
during its startup or bootloader mode. Our investigation reveals
not only the functions associated with the standard initial
execution, but also an intriguing aspect of the firmware’s
operational logic regarding procedures for both successful and
unsuccessful verification of data.

B. Firmware Verification

Our analysis began by identifying the actual entry point of
the firmware, which is critical as it is the first code executed
upon boot and orchestrates the initial setup and environment
configuration for the device. The function labeled as en-
try point in the Ghidra decompiler is a significant focus since
it sets the initial execution context and begins the firmware
operations. This function effectively sets up the environment
by configuring the watchdog timer, clearing portions of RAM,

Fig. 8. FUN 0000d506 makes a call to looks like entry point

and performing initial firmware integrity checks. It then calls
FUN 0000d506, which can be considered an extension of the
entry point functionality due to its integral role in setting up the
device’s operational parameters, including peripheral setups
and preliminary security checks.

FUN 0000d506 plays an interesting role when it comes
to initializing the device. Within FUN 0000d506, there is a
call to Verify RF Firmware(), which is essentially a func-
tion devoted to verifying different regions of memory with
various calls to Verify Memory, Call Verify Memory #1,
Call Verify Memory #2, and Call Verify Memory #3. Once
Verify RF Firmware calls these functions and completes the
memory verification process, it checks the result of the verifi-
cation against certain expected values. If the value returned is
equal to 0, the secondary entry point FUN 0000d506 makes a
call to looks like entry point and returns, indicating that we
will continue the initialization process inside that function.
This procedure can be seen in Figure 8.

Our analysis initially led us to believe that looks like entry
point functioned as a recovery mechanism when firmware
verification failed. However, upon closer inspection, we dis-
covered that looks like entry point is actually invoked when
the verification of the RF firmware succeeds, not fails.

The discovery that looks like entry point is actually linked
to successful verification as opposed to failure as we pre-
viously thought introduces an entirely different perspec-
tive on the device’s security measures. For one, we real-
ized that when the RF firmware is verified successfully,
looks like entry point is called in order to proceed with
the regular operational set-up that is typically found after a
successful data integrity check. This will likely prepare the
system to transition from a secure boot to normal operational
mode. This discovery also highlights the device’s reliance
on successful start-up procedures to ensure security and in-
tegrity. In the case where RF firmware verification fails, the
code would carry on with the rest of the FUN 0000d506
function, which performs different operations in the case
of a failure as opposed to the operations carried out in
looks like entry point following a success. This functionality
(i.e. comprising multiple different functions for different ver-
ification scenarios) can be viewed as a robust design choice,
promoting resilience by ensuring that only verified and intact
firmware can enact the device’s full capabilities.



Fig. 9. I2C mode - USCI Operation

XII. DATA TRANSMISSION

A. Background

Data transmission is a crucial step for the system to operate;
it allows the fire alarm system to control its various com-
ponents, including detectors, control panels, and monitoring
software. Understanding how the fire alarm system handles
the data transmission is a crucial step in reverse engineering
this system.

B. Peripherals

Our analysis began by checking which function would
be in-charge of the peripherals for this device. A function
called FUN 0000ee08 stood out as it began by initializing
and configuring peripherals, such as ports and control registers
(Peripherals::PORT 3 4, Peripherals::USCI B0). The univer-
sal serial communication interface (USCI) handles multiple
serial communication modes, this function in specific utilizes
USCI B which supports I2C mode. I2C mode allows for 7-bit
and 10-bit device addressing modes, START/RESTART/STOP,
multi-master transmitter/receiver mode, and slave receiver/-
transmitter mode. External components attached to the I2C bus
serially transmit and/or receive serial data to/from the USCI
module through the 2-wire I2C interface, as shown in 10. So
the analysis of this function is a big step toward understanding
how information is transmitted within this system.

C. Data Transfer

The main function, FUN 0000ee08, utilizes five other func-
tions to perform the data transmission. The five functions
it utilizes can be broken down to what they are responsible
for: FUN 0000f09c controls the peripherals based on certain
inputs, FUN 0000f95a sends default values to FUN 0000f09c,
FUN 0000e6b8 prepares and sends data to the USCI B0
peripheral, FUN 0000f6c6 waits for the transmission to be

Fig. 10. I2C Bus Connection Diagram

completed, and finally FUN 0000e814 actually performs the
data transmission. This function provides valuable information
as to how the fire alarm system communicates and trans-
mits data to its peripherals, which by fully understanding
this behavior we would be able to take advantage of any
vulnerabilities presented by this data transmission.

XIII. SURROGATE DEVICE

A. Background

Another attack that the team has been working on is using
an Arduino and other additional hardware to send ’spoofed’
packets to the gateway. This would theoretically allow an
attacker to remotely compromise the gateway via the remote
bootloader attack previously discovered [9]. Currently the team
understands the packet structure and what signals can be sent
to trigger the alarm. The team has also created a design for
the surrogate device, but has yet to build it.

XIV. CONCLUSION

A. Next Steps

Now that the peripherals are identified within key func-
tions more data needs to be collected dynamically. There are
many future directions research could go: tracing decrypted
data messages, logging hidden debug strings, tracing data
transferred with DMA. The main priority next semester will
be to write scripts to collect the necessary information and
synthesize that with current results to be able to craft a
message that manipulates the gateway.

The next steps for signal spoofing would be to build and test
the surrogate device designed in the previous paper, as well as
modify and add onto the device so that it can read and respond
to SLC messages sent by the gateway. This could provide
further insight into reverse engineering the remainder of the
device code, as it would provide both this team and further
teams with potential insights as to how the device processed
and sent out SLC messages, as well as with various insights
into the device’s source code.

One possible step this team can take in terms of the device’s
firmware verification is investigating the device’s hardware
and software capabilities to support real-time monitoring of
firmware integrity. This can be critical to the security or
insecurity of a device, as it could allow continuous, automatic
checks that the firmware has been tampered with, and not just
one check at the entry point. This investigation could include
a deep dive into the existing architecture of the devices to



identify and manipulate any already built-in security features,
such as the CRC module and any other defenses.

The next step for analyzing data transmission would be to
delve deeper into the peripheral’s architecture and explore the
physical hardware. By analyzing the peripheral and port used
by the data transmission function the team would possibly be
able to find new exploits that could bypass current limitations.
The physical hardware that this port connects to possibly holds
more information that can be extracted and better understand
the transmission function, potentially allowing for the team to
achieve a breakthrough.

When it comes to identifying the packet parsing methods
for the RF gateway, there are a couple of directions that be
pursued in the future. A better understanding of the func-
tions that reference interesting 2nd payload reception func
and Do stuff and wait payload ready would give us a far
better understanding of the context in which both of these
functions are called. Since they both seem to perform the same
job, It would be valuable to know when one is used instead
of the other. Another area of interest would be a dynamic
analysis of what the firmware does when the gateway receives
a message. This would likely reveal a significant amount of
information about what the firmware does with the packet data
it receives.

REFERENCES

[1] Detectors. [Online]. Available: https://www.securityandfire.honeywell.
com/notifier/en-us/browseallcategories/wireless/swift/detectors

[2] Texas Instruments. SWIFT™ Smart Wireless Integrated Fire Technology
Manual. [Online]. Available: https://prod-edam.honeywell.com/
content/dam/honeywell-edam/hbt/en-us/documents/manuals-and-guides/
user-manuals/LS10036-000FL.pdf?download=false

[3] E. Bystrak and A. Berezowski, “Enhanced group addressing system,” U.S.
Patent 5 539 389, Jul. 23, 1996.

[4] Wikipedia contributors, “Advanced encryption standard — Wikipedia,
the free encyclopedia,” 2024, [Online; accessed 2-February-
2024]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Advanced Encryption Standard&oldid=1209329215

[5] M. Dworkin. (2001) Recommendation for block cipher modes of
operation. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/Legacy/
SP/nistspecialpublication800-38a.pdf

[6] T. Uli Kretzschmar. Aes128 - a c implementation for encryption
and decryption. [Online]. Available: https://e2e.ti.com/cfs-file/ key/
communityserver-discussions-components-files/156/slaa397a.pdf

[7] Texas Instruments. MSP430x5xx and MSP430x6xx Family User’s Guide.
[Online]. Available: https://www.ti.com/lit/ug/slau208q/slau208q.pdf

[8] A. Bussey, D. Chou, M. Fabregas, and S. Wright, “Swift wireless fire
alarm system analysis,” Apr., 2023.

[9] D. Lawrence, G. Kokinda, G. B. A. Lukman, Y. Kim, J. Smalligan, and
C. Roberts, “Swift wireless fire alarm pull station analysis,” Nov. 2021.


