
SWIFT Wireless Fire Alarm System Analysis
Drew Petry (Advisor)
Research Engineer II

Georgia Tech Research Institute
Atlanta, Georgia, United States

drew.petry@gtri.gatech.edu

Garrett Brown (Advisor)
Research Scientist I

Georgia Tech Research Institute
Atlanta, Georgia, United States
garrett.brown@gtri.gatech.edu

Trey Durden
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

tdurden8@gatech.edu

Madelyn Novelli
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

mnovelli3@gatech.edu

Alexander Schoolcraft
Mike Cottrell College of Business and Technology

University of North Georgia
Dahlonega, Georgia, United States

adscho3199@ung.edu

James Ragazino
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

jragazino3@gatech.edu

Liam Smith
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

lsmith398@gatech.edu

Ky Tran
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

ktran323@gatech.edu

Spencer Redelman
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

sredelman3@gatech.edu

Tony Tanory
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

ttanory3@gatech.edu

Abstract—The SWIFT (Smart Wireless Integrated Fire Tech-
nology) system, developed by Honeywell, includes various fire
alarm devices such as wireless smoke and heat detectors, pull
stations, alarms, monitoring software, and control panels. By
utilizing wireless communication, SWIFT eliminates the need for
extensive cabling, which simplifies installation and allows for
more flexible device placement. However, wireless systems can
be vulnerable to hacking or tampering if not properly secured.
Unauthorized access could disrupt the system’s functionality or
trigger false alarms. This study seeks to examine the security
weaknesses of the Honeywell SWIFT system through firmware
reverse engineering and targeted attacks.

I. SYSTEM INTRODUCTION

The Honeywell SWIFT system represents a significant
advancement in fire detection technology by incorporating
wireless communication into a traditionally wired infrastruc-
ture. This system integrates various fire safety devices through
its wireless mesh network, such as smoke detectors, heat
sensors, and pull stations, offering flexibility in installation
while maintaining high reliability in system performance. This
wireless capability reduces the need for extensive cabling and
allows for easier deployment in environments where running
physical wiring is challenging or cost-prohibitive.

At the core of the system is the Signaling Line Circuit
(SLC) processor, which acts as a critical intermediary between

wireless devices and the wired Fire Alarm Control Panel
(FACP) through the Wireless Gateway. The SLC processor
manages communication across the system, translating signals
from the wireless mesh network into formats the FACP can
interpret and control. This ensures that wireless devices, such
as smoke and heat detectors, seamlessly function alongside
traditional wired components.

Complementing the SLC is the Radio Frequency (RF)
processor, a key interface that bridges the gap between wire-
less devices and the system’s wired infrastructure. The RF
Gateway oversees the operation of the wireless mesh network,
which uses wireless communication to ensure efficient data
transmission between the devices and the FACP. This gateway
plays a pivotal role in maintaining system integrity, managing
wireless device activity, and relaying information to the SLC
for processing.

Despite these technological advancements, the integration
of wireless communication introduces potential security risks.
Reverse engineering both the SLC and RF Gateway is crucial
for understanding the underlying firmware and communication
protocols used by SWIFT. By analyzing how data is exchanged
and processed, we can identify potential weaknesses. These
investigations aim to highlight potential risks to the the SWIFT
system’s security.



II. PREVIOUS RESEARCH

The previous team delved into the AES encryption and
decryption functions, as well as payload parsing and data
integrity checks functions.

III. RF GATEWAY REVERSE ENGINEERING

By examining WSG RF MCU FW Dump v4 1 0x00000-
0x45BFF.bin in Ghidra, insight was gained into how the
compiler optimizes the space taken up by functions, and the
functions that revealed this drew attention to another function
that may be useful when implementing the backdoor attack
on the RF gateway. This section will begin by examining how
FUN 00007350 and FUN 0000735e relate to each other in a
way that saves space in memory, and it will then elaborate on
how those two functions relate to the potentially important
function FUN 00038c1c.

Fig. 1. Decompiled View of FUN 00007350

The decompiler view of FUN 00007350 shows that the
function sets the byte at address 0x00002065 to be 0xff. Before
calling FUN 00038c1c with the parameters shown. On the
surface, this seems like a very simple function. However, more
is revealed when looking at the assembly code for the function.

Fig. 2. Assembly Code for FUN 00007350

Note that FUN 00038c1c has four parameters, and these
parameters are stored in the registers R12, R13, R14, and R15.
Looking at the assembly code for FUN 00007350, it initially
seems to be incompatible with the decompiler view. Setting
the byte at address 0x00002065 to be 0xff occurs first, and the
same parameters shown in the decompiler view were passed
into R12, R14, and R15. However, passing 0 into R13 and
calling FUN 00038c1c does not seem to happen, but there
is also no statement returning back to where the function is
called from. Due to this, a call to FUN 00007350 will result
in the code right after, which is in FUN 0000735e, also being
executed.

Fig. 3. Assembly Code for FUN 0000735e

This code completes the operations shown by the decom-
piler view of FUN 00007350. 0 is placed into R13, which
completes the filling of the parameters for FUN 00038c1c,
and FUN 00038c1c is what is branched to and executed
immediately after that. Based on this analysis, it appears that
both FUN 00007350 and FUN 0000735e serve only to set
the parameters for FUN 00038c1c. This can be seen by the
fact that FUN 0000735e is called from six other functions,
not including how it is, for all intents and purposes, called
by FUN 00007350 not returning to any return address. While
the first, third, and fourth parameters of FUN 00038c1c may
be set in other functions, such as FUN 00007350, those other
functions all most likely need the second parameter to be 0,
which is likely why FUN 0000735e exists only to set that
parameter and then call FUN 00038c1c. The compiler likely
did this in order to save space in memory by having a single
function to do this instead of writing it into every function that
needs to use FUN 00038c1c. To conserve even more space,
FUN 00007350 can exist without returning to some return
address because it is right before FUN 0000735e, meaning
that it can immediately proceed to executing the code in
FUN 0000735e. Examining this portion of code has shown
how efficient the compiler can be in terms of converting code
into as few assembly instructions as possible. However, it also
has drawn attention to FUN 00038c1c.

Based on its decompiler view, FUN 00038c1c appears to
be an incredibly important function in the RF Gateway. This
is because it is referenced 48 times by other functions, and
there are also other functions throughout the gateway, such as
FUN 00007350, that are entirely dedicated to setting the pa-
rameters of calls to FUN 00038c1c. Note that FUN 00038c1c
has not been fully reverse engineered yet, but there are a
few ideas that can be taken away from a cursory look at
the decompiler view. The frequency of USCIB0 is changed
to 0x02, data is transmitted, and the frequency of USCIB0 is
changed to 0x01. The importance of the data being transmitted,
the destination of that data, and the functions called along the
way will be determined through further reverse engineering.
What the team will find in FUN 00038c1c will hopefully
be helpful in implementing the backdoor attack on the RF
Gateway.

Upon further research and investigation, it appears that
FUN 00038c1c appears to be a function that is indicating a
message being passed between devices. We believe that the
ports involved are the indicators that messages are being sent



Fig. 4. Decompiled View of FUN 00038c1c

between devices.
We have also discovered FUN 0003c1c2. Upon reverse

engineering, it appears that this function is performing some
sort of check on a data table or buffer. Note that the
function performs an iterative loop over &DAT 00003ca1.
This data is the subject of this verification or check pro-
cess. Furthermore, we found that this function is used as a
boolean in FUN 00021884. When FUN 00003c1c2 returns 1,
FUN 00021884 appears to print ”FULL” to the console. This
leads us to believe that FUN 0003c1c2 is indeed checking if
&DAT 00003ca1 is full. The next step is to further investigate
&DAT 00003ca1 and FUN 00021884 to gather a more com-
plete understanding of what is being represented as ”FULL”
and why it is relevant.

Another key area of focus is reverse engineering functions
that interact with the SX 1231 Transceiver. For example,
change RF mode. Each of these functions have an address
that corresponds with the SX 1231 data sheet. This address
shows us what instruction is taking place on the transceiver.
In this case, x01 corresponds to changing the operating mode
of the transceiver. Within this section of the data sheet, we
are able to see that bits 4-2 of the parameter passed into
this function decide which operating mode to change the
transceiver to. There are 5 different modes: Sleep, Standby,
Frequency Synthesizer, Transmitter, and Receiver Mode. All
of the other combinations are reserved. When this function is
called, it sets the operating mode of the transceiver to one of
these modes before returning.

Another critical function we identified is FUN 0000e83a.
This function is pivotal in managing firmware updates, verify-
ing message integrity, and ensuring proper buffer handling via

Fig. 5. Decompiled View of FUN 0003c1c2

Fig. 6. Decompiled View of FUN 00021884

the ipc tx buff. It validates incoming data using a checksum
(e.g., ipc tx buff[0x9f]), outputs -V to A0, the debug port,
and prepares verified data for writing into flash memory.
Specifically, it erases a flash segment at 0x1980 and writes
new firmware or configuration data stored in ipc tx buff[0x9b]
through 0x9e. This suggests that 0x1980 to 0x1983 may hold
version-related information, though further investigation into
how this function is utilized—particularly the relationship
between 0x1980 to 0x1983 and bytes 155 to 159 (x9b to x9e)
in the ipc tx buf—is needed to confirm this. Reversing this



Fig. 7. Decompiled view of changes RF mode

Fig. 8. SX 1231 Data Sheet

function not only provided insight into the firmware update
mechanism, but also revealed how incoming messages are
parsed, validated, and utilized by the gateway. This knowledge
is particularly useful, as understanding the data flow and
memory mapping allows attackers to inject malicious payloads
disguised as valid firmware updates. Furthermore, the use
of fallback values and retry loops in the function provides
potential entry points for crafting persistent exploits. Further
analysis of functions that call FUN 0000e83a could reveal the
specific triggers and conditions under which firmware updates
are initiated. This understanding would provide insight into the
operational timing and decision-making process for updates,
potentially identifying other opportunities for exploitation.

Lots of work has been done reversing smaller mathematical
functions and utility functions. For example, the divide and
divide byte functions as well as the function at 0x3d5a2 that
converts numbers into string characters and transmits them
via the USCI A0 peripheral. The current reversing focus on
FUN 000221d0 because of its call location in a small loop
where the RF chip is configured to be in receive mode each
iteration. More work needs to be done figure out what this
functions purpose is. Currently, it is only clear that it transmit
data and uses CRC functions.

IV. CATEGORIZING FUNCTIONS

This semester built on the work started in the
Spring 2023 paper where the USCB peripheral
connected to the transceiver was used to identify

Fig. 9. SX 1231 Data Sheet

Fig. 10. Decompiled View of FUN 0000e83a

Writes data out SPIB0 to RF Chip at Reg(loc: 0x3a188).
Every function that interacted with this peripheral was labeled
and categorized this semester. Categories are denoted via
bookmarks in the Ghidra repository for the RF firmware.
Note in the following subsections that generic names using
the memory locations of the functions will be given instead
of names for brevity and clarity for future teams in case the
function names change.

A. SX1231 REG CONFIG

FUN ee08: It loops and writes configuration byte data
to SX1231 registers 0x18 to 0x4f using values from RAM
0xd483 to 0xd4ba. It wasn’t obvious that these values were
being read from these memory locations at first because Ghidra
can’t see the results of a loop being incremented given this is
static analysis. By the same reasoning, it is not clear when
these values were written to RAM. The current hypothesis
is that this function restores register configurations from a
previous time, so this function is used to reload a configuration
in case the configuration had to switch for some reason,
which happens often given the configuration of these registers
determines how packets are received and sent.

B. BUILD PACKET SYNC WORD

FUN 1fa06: SX1231 Configuration register is used to set
the sync word length to 4. The synce work is then set to 0x31
0x54 0x77 0x9a. This contrast with the only sync word that
has been seen OTA (0x21 0x43 0x65 0x87). Either the branch



where this sync word is set is never taken or is taken rarely
for very special interactions.

FUN 34a90: Based on the first parameter this function
chooses different 5 byte sync words. One branch sets the sync
word to 0x2a 0x86 0xdf 0xca 0x34 while another branch sets
it to 0xaa 0x55 0xaa 0x55 0xaa. The other branch sets it using
memory 0x4c08 to 0x4c0b and 0xaa for the fifth byte. Using
this memory location is interesting because it is the same
location builds rf message reads from. More work should be
done to look at FUN 38b82 and other functions that write to
this memory location.

C. AES

Previously there was confusion regarding encryption and
decryption of packets. OTA the payload is encrypted and then
the sync word and crc bytes are added to either side. This
was corroborated by the encryption function found in Swift
Tools application when it was reversed with ILSpy and the
Pull station firmware having the same AES encryption key.

Interestingly, based on the documentation for the SX1231
transceiver the maximum message length that can be encrypted
is 64 or sometimes 65 bytes long. This is because the buffer
size is limited and the full message is needed to encrypt.
This is due to the fact that AES is a block cipher; if the
developers used a stream cipher they wouldn’t have made the
same choices that these developers had to make to encrypt
and decrypt longer messages. The decryption process had to be
implemented in software (0x2c60e and 0x17544). That’s not to
say that it isn’t using hardware encryption and decryption for
shorter messages (see 0xd64c and 0xd68a where the registers
are configured).

D. FIFO

FUN 33ff8: This function reads from the SX1231 FIFO
register (register 0x00) to get the packet into memory. Note
the software doesn’t need to remove the sync word or crc bytes
when reading from the register, because that is automatically
handled by the transceiver hardware. The AES module is
configured, so the maximum message length is 64 bytes long.
This function returns 0xfe error code if the message is greater
than or equal to 65 bytes long. Memory location 0x1f58 is
set to 100 by default or the value of param 4. It decrements
everytime an interrupt occurs for Timer A0 peripheral. This
functions as a timeout with the packet is being read in. If the
entire packet isn’t read in time the function will return error
code 0xfd. 0 is returned when the message is successfully read
into memory.

V. TABLE IN RF BINARY

Through examining the RF binary, several functions were
found in which memory addresses were exclusively offset by
multiples of eight, which was accomplished by bit shifting
integers to the left by three. The trend seemed strange at first,
but the function in Figure 11 was discovered and made it
obvious what all of these references are for.

Fig. 11. Decompiled Table Initialization Function

This function initializes the state of a table within memory.
When altering this table, functions reference addresses 0x4445
through 0x444c and offset them by multiples of eight, and the
integers multiplied by eight cannot exceed 24. Therefore, this
table is an array of 24 entries, with each entry consisting of 8
bytes of data, making the table a 24 by 8 array. For the sake
of explaining the key functions throughout this portion of the
paper, TABLE[i][j] will denote mem[0x4445 + 8i+ j].

Before looking at other functions, it is important to ex-
amine the initial state of the table. For each valid index k,
TABLE[k][0] = 0x7f . This is done to mark that entry
as being invalid. TABLE[k][1] = 0 because, for valid
table entries, TABLE[k][1] tends to be in the range [1, 3].
TABLE[k][2] = 0 because TABLE[k][2] acts as a counter
for attempts to write TABLE[k][0] to memory. There has not
been as much insight into the initial settings of TABLE[k][3],
TABLE[k][5], and TABLE[k][6]. The function also clears
addresses 0x4505 through 0x4507. Each of these addresses
hold statistics about the table, with mem[0x4505] holding the
number of valid entries, mem[0x4506] holding the number
of valid entries TABLE[k] such that TABLE[k][1] = 1, and
mem[0x4507] holding the number of valid entries TABLE[k]
such that TABLE[k][1] = 3.

The first function to examine is byte in-
dex in table 4445(char param 1). This function returns
an index k such that TABLE[k][0] = param 1. If
param 1 = 0x7f or no k exists that satisfies this criteria,
the function simply returns 0x7f to denote that this
was an invalid call to the function. This is a key helper
function that several other functions use. One function that
uses this prominently is void set table 4445 entry(byte
param 1,byte param 2,byte param 3). This function begins
by checking that the table is not full (mem[0x4505] < 24)
and that param 1 is in the range [1, 50]. If one of these
properties does not hold, no entry will be added to the table
and the function returns. If both properties hold, the function
then calls index in table 4445(param 1) to check if there
is already an index k such that TABLE[k][0] = param 1.
If there is a k that satisfies that criteria, the function
sets TABLE[k][5] = param 3 if param 2 is either
1 or 3 and sets TABLE[k][1] = param 2 only if



param 2 = 1, with mem[0x4506] being updated accordingly.
If index in table 4445(param 1) returns 0x7f , the function
searches for space in the table, and, once that space is found,
the new table entry is created in the manner shown in Figure
12.

Fig. 12. Method of Adding a New Table Entry

This function showed that TABLE functions closer to a
dictionary than a standard two-dimensional array. This is
because, for some c in range [1, 50], there can be only by
one k such that TABLE[k][0] = c. Therefore, TABLE[k][0]
acts like a key for the data held in the rest of TABLE[k].

Another function that calls byte index in table 4445(char
param 1) is void delete 4445 table entry(char param 1,
char param 2). If there exists an index k such that
TABLE[k][0] = param 1 and TABLE[k][1] = param 2,
then that TABLE[k] is deleted by resetting its fields to
their initial states from table init 4445(). Notably, if some
entry TABLE[k] is deleted such that TABLE[k][1] = 1 or
TABLE[k][1] = 3, then the function sets TABLE[k][4] = 0.
Future analysis shows that TABLE[k][4] is a boolean value
that denotes whether TABLE[k][0] has had the opportunity
to be written to memory.

The next functions found were simpler and less no-
table functions that take in no parameters and simply
search for a valid entry that satisfies certain proper-
ties, and those aren’t very interesting. There are func-
tions like byte largest table key lt(byte param 1,byte
*param 2), which returns the largest TABLE[k][0] such that
TABLE[k][0] < param 1, and it then sets ∗param 2 = k.
Similarly, byte smallest table key gt(byte param 1,byte
*param 2) returns the smallest valid TABLE[k][0] such that
param 1 < TABLE[k][0] and then sets ∗param 2 = k.
There are also other functions to edit the table like void
swap key in table(byte *param 1). For all indices k such
that TABLE[k][0] < 50, the function sets TABLE[k][0] =
param 1[TABLE[k][0] − 1], fully deleting the entry if
TABLE[k][0] becomes 0x7f . These functions are interesting
in how they traverse and alter the table, but they do not answer
the question of what the table is for.

The main function that answers this is void trans-
mit and delete from table(). Before explaining what the

function does for each index k, let a boolean cond =
mem[0x3c08] ∨ (mem[0x3743] ∧ mem[0x3c09]). For each
index k, the function begins by continuing to the next index
if TABLE[k][0] = 0x7f or TABLE[k][1] is not 1 or 3.
TABLE[k][2] is then incremented, and the next index is
checked if TABLE[k][2] < 11. Afterwards, if cond, then
the function sets TABLE[k][2] = TABLE[k][4] = 0.
Otherwise, the function sets TABLE[k][4] = 1, denoting that
the entry has had the opportunity to be written to memory.
Finally, if TABLE[k][1] = 3, then the function writes S and
R to USCIA0, which could denote “Signal Received”, and
TABLE[k][0] is written into an array starting at 0x322b. After
that loop is over, the table entries that satisfy the condition
TABLE[k][4] = 1 are deleted. From this function, it is
apparent that TABLE[k][2] is a counter denoting the number
of times TABLE[k][0] has attempted to be written into
memory and that TABLE[k][4] is a boolean value denoting
whether TABLE[k][0] has had a real chance to be written to
memory. Overall, TABLE is a table of values to be written to
memory, with TABLE[k][0] holding the value to be written
and the rest of each entry holding various statistics about
whether it is ready to be stored. The next steps for analyzing
this table will be to analyze the functions that call the functions
discussed and examine what they do with the results of these
operations.

VI. RF PROTOCOL ANALYSIS

Honeywell’s SWIFT system utilizes an SX1231 Transceiver
to handle the RF communication (195Mhz, FSK) between
the gateway and peripherals. In order to reverse engineer the
protocol we utilized a HackRF in combination with the SWIFT
Tools application to trigger different scenarios and record the
RF communication. From previous semesters we know the
general format of the messages sent.

Fig. 13. Diagram of OTA message format

Previous semesters identified a constant preamble/syncword
”0x21436587” and a packet length of ”0x21” specifying that
the encoded payload is 33 bytes long. In order to decode this
we must XOR every byte with the hex value ”0xaa”.

Using ILSPY, an open-source .NET decompiler, we
can utilize the fact that Honeywell used common dlls
(dynamically linked libraries) to identify the fields of
the payload. Some notable fields are: Bytes (7:10) is the
serial number of the pull station and Byte (13) is the SLC
address of the pull station. Armed with this information we
were able to create a python script to automatically take data
from a HackRF capture and translate it to the respective fields.

Overview of RF Packet disassembly process

1. Example Gateway RF Capture:



00100001010000110110010110000111001000
01100111101100010000010010111011011100
01011011011101101110100100100111100100
00101111010001100100111100001110101010
10100011101100100101010110101011101...

2. Translate to Hex (if not already):
21436587219ec412edc5b76e92790bd193c3aa
a3b255ab8a7fbdf52658f9a4aaaaaaaaaaaaaa

-> Syncword: 0x214365872
-> Packet Lengh: 0x21

3. XOR non syncword + pck len bytes:
2143658721346eb8476f1dc438d3a17b396900
0918ff0120d5175f8cf2530e00000000000000

4. Match bytes with IL Spy description

Fig. 14. OTA Packet Decoded Fields

VII. SERIAL PROTOCOL ANALYSIS - GATEWAY
COMMUNICATION

The SWIFT Tools Application utilizes a serial protocol to
send messages to the SWIFT W-USB Transceiver, allowing
communication with devices on the mesh network. The ap-
plication, distributed as an unobfuscated.NET executable and
DLL, allows for straightforward reverse engineering using
tools like ILSpy. Each message frame contains a Wireless-
Comm.WirelessPacket, encoded based on frame type, with
WirelessComm.ProtocolManager managing frame type selec-
tion and CRC calculations. To decode captured serial traffic
(USB Protocol), the team reverse-engineered SWIFT Tools,
decompiling its DLLs to understand its operation. Key analysis
focused on three DLLs (WirelessComm.dll, WirelessInter-
faces.dll, and WirelessPlugin.dll) responsible for parsing and
creating serial messages to be sent to and from the W-USB
device and the Gateway / Pull Stations.

Through the use of Serial Port Monitor we were able to
grab an example of such communication between SWIFT
Tools and the Gateway. At first glance, the purpose of this
message is unknown as it contains a long string of hex
bytes. Therefore, in order to deconstruct the meaning be-
hind the bytes, a Python script was created to automatically
pull out fields and relate them to enums found in IL Spy.

Fig. 15. General Serial Gateway Message

The main source of information when deconstructing this
packet was the WirelessNode Class located in the Honey-
well.WirelessTool.WirelessInterfaces.WirelessNode dll (figure
13).

Fig. 16. Wireless Node local variables

Accompanied by previous semester’s research we were able
to determine the bytes in the Serial Packet that corresponded
with these variables:

Bytes -> Field



-------------------------------------
1:4 -> Serial Number (int)
5 -> Node Type (enum)
6 -> BootLoader Version and Node State

(bitfield / enum)
7 -> SLC Address (int)
8 -> SLC BootLoader Version
9 -> Hardware Version
10 -> Software Version
11 -> SLC Firmware Version
12 -> Mesh ID (int)
13:16 -> Sync Word (int)
17 -> Fire Brand (enum)
18 -> Gateway Mesh Attribute List Capacity
19:22 -> Mesh SLC Address (int)
68:80 -> Serial Numbers (int)
229 -> Magnet Lock Status (bitfield)
230 -> Various booleans (bitfield)
231 -> Lock Time Remaining (enum)
232 -> RF Application Build Number
233 -> SLC Application Build Number
234 -> RF Bootloader Build Number
235 -> SLC Bootloader Build Number
236 -> Unknown Field
237 -> XOR Checksum

As many of the field present in the packet represented
enums, bit fields, and integers requiring manipulation, specific
parsing functions were required to deconstruct each value:

- Enum: Enums were stored into python dictionaries and
keyed with the base 10 integer corresponding to the
ILSpy disassembly

Fig. 17. Enum Parsing

- Bitfields: Initially represented as hex bytes, simple AND
operations were used to specify bits and coorelate them
to booleans

Fig. 18. Bit Field Parsing

- Int: Serial Numbers and Mesh ID’s were given in the
packet as reversed hex bytes, so in order to relate them

to thier base 10 represenations, they were reversed and
converted into base 10

Fig. 19. Integer Parsing

Iterating through all fields discovered in the Serial Packet,
we were able to automatically deconstruct the information
hidden within.

Fig. 20. Serial Packet Deconstruction

VIII. GHIDRA’S SUPPORT FOR MSP430

Ghidra’s support for the MSP430 language is incomplete
and causes several difficulties when decompiling and viewing
functions in the listing view. The main reason for the problem
is the odd way this language handles addresses. The address-
ability of memory is only 20-bits; however, the operands can
be 20-bits and be extended to take up the full space of a 32-
bit register. When Ghidra sees the 32-bit register it interprets
it as such and this nuance contributes to some edge cases
that make the decompiler show unnecessary (although not
necessarily incorrect) code lines. For example, before most
function calls there will be a line of code showing the return
address being placed on the stack; this behavior is normally
implied, so showing it leads to a messy decompiler view.
Further complicating the decompiler view, this addressability
leads Ghidra to add extensive masking to numerous variables
(E.G. ”& 0xFFFFF”), which increases the clutter in the code,
making it that much harder to read.

Other problems have stemmed from the “Decompiler Pa-
rameter ID” option of the analyzer. This option can be used
on a binary to automatically create parameters and local
variables. After exploring the functions, the team realized that
a significant number of functions have incorrect arguments
and incorrect return types. Registers that are immediately
overwritten in the first few lines of assembly instructions have
been consistently defined as inputs, which doesn’t make sense.
Also, void return values weren’t committed, so functions that
returned nothing looked like they would fill variables in the
decompiler view.

In addition to choosing the wrong registers for input,
the wrong granularity was also chosen. MSP430 uses three



different granularities for arguments: 8-bit, 16-bit, and 20-bit.
This is denoted by instructions that end in B, W, and A respec-
tively. The automated analysis only chose the correct register
(R12 lo in Ghidra notation) when the type B instruction was
used, not type W or type A. Therefore, the team has had
to continually manually change register arguments for many
functions. The combination of the functions with the wrong
number of arguments, the wrong return values, and the wrong
argument granularities has made the decompiler unusable and
even useless in some scenarios.

IX. SPOOFING A DEVICE ON THE SLC

The Gateway discussed so far is a singular device with two
separate co-processors: the RF and SLC. While the RF handles
communication with the wireless devices on the mesh network,
the Signaling Line Circuit (SLC) handles communication
between the control panel and intelligent and addressable
initiating, monitor, and control devices. Essentially, the SLC
is a data and power bus that transmits both information and
power between everything that makes up the fire alarm system.
While other circuits may have an ’on’ or ’off,’ the SLC
has several types of signals. It also handles many different
types of messages, such as simple polling from the fire alarm
control panel (FACP) to see which devices are on the network,
receiving the polling message, and alarm signals that arise
from a pull station or smoke detector. Each SLC message is
broadcasted to all other devices on the network. In order to
pass information from the wireless devices to the FACP, the
SLC firmware regularly uses ports USCI A1, USCI B1, and
General-Purpose I/O (GPIO) ports 1, 2, and 8 [1].

The goal of our team is to spoof a device on the SLC
network, which entails replicating any of the legitimate devices
that would be on the SLC network. The development of this
device allows us to send ’spoofed’ packets to the gateway,
which will allow an attacker to remotely compromise the
gateway. This device can be some kind of microcontroller-
based device that can arbitrarily change General Purpose I/O
(GPIO) lines to toggle the lines of the SLC network. Some top
candidates the team discussed were Arduino and Raspberry
Pi. The Raspberry Pi has all the features of a standard PC,
such as a dedicated processor, graphics driver, memory, and
its own operating system known as the Raspberry Pi OS.
It can perform numerous tasks, such as plugging a monitor,
mouse, and keyboard to it, as well as connecting to the Internet
and adding a camera, among many other things. Due to this,
the Raspberry Pi is seen as much more complex; while the
Arduino is an electronic board with a simple microcontroller,
the Raspberry Pi is a full-fledged computer [2].

Therefore, the team decided to use the Arduino as our sur-
rogate device. The Arduino provides a programmable circuit
board and can read data from sensors and buttons and turn
it into outputs. The Arduino is best suited for repetitive tasks
and for projects that need a simple output based on sensory
input, and the code ran on the surrogate device will go through
less levels of complexity than with the Raspberry Pi, thus it
fits our design goals well [3].

Fig. 21. Previously proposed surrogate device design

Fig. 22. A simple resistive voltage divider

Fig. 23. Formula for a voltage divider

In order to spoof a fire alarm on the wired SLC network,
the team realized that we can’t actually replace a device on
the SLC line. Instead, the surrogate device must be added to
the line in a way such that it appears to be part of the system
and can replicate the appropriate addresses and SLC messages.
Otherwise, the system would enter a ”System Trouble” state
from not recognizing the surrogate device.

A current design proposed by the Fall 2023 team consists of
a very similar design to the wired pull station set up inside the
lab. Our team is currently examining it to see what may need
to be edited or adjusted, if anything. The first design choice we
noticed is the addition of a voltage divider. Because messages
going into the pull station can fluctuate from 10V to 24V,
and the Arduino can only support up to 5V, the device would
need a resistive voltage divider to lower the input voltage going
into the microcontroller. Thus, two resistors of 400 microohms
(R1) and 100 microohms (R2) are used in the design, though
these numbers are not obligatory and can be slightly altered
(i.e. a max input of 24V with R1 = 800 and R2 = 200 produces
an output of 4.8V and is still in the Arduino’s safe zone).

Throughout the semester, our team worked diligently to
design a new version of the surrogate device and code. One
implementation we decided to incorporate was debouncing
logic. Debouncing is a technique that removes unwanted input



Fig. 24. Surrogate Device Schematic 2.2

noise from buttons or switches. This could be important for
the trigger that lets us know when there is an alarm or not.
There are 2 ways to implement debouncing: through hardware
or software. With hardware, we can use a resistor-capacitor
(RC) filter with a Schmitt trigger diode. However, this might
be too complicated for our purposes—our team instead opted
to write the debouncing in our software code. The hardware
included for the debounce logic include: Arduino Board,
momentary button or switch, 10k ohm resistor, hook-up wires,
and breadboard.

Our team also created a design we aptly named the Sur-
rogate Device Schematic 2.2, as seen in Figure 24. Two
designs were created, both 2.1 and 2.2, with Schematic 2.2
more closely modeling the design of the previous semester.
One important feature of these designs is the two MOSFETs.
MOSFETs are Metal-Oxide-Semiconductor Field-Effect Tran-
sistors that are used to amplify or switch electronic signals in
circuits. They can efficiently control high-power devices with
minimal energy loss–they consume little power and can control
high-current signals. There are two types: N-channel and P-
channel. N-channel turns on when the voltage applied to the
gate is positive relative to the source, and P-channel is the
opposite (negative). In our design we are using an N-type
Enhancement MOSFET, which has three visible terminals:
Source (S), Drain (D), and Gate (G). Source is where the
current enters the MOSFET, and Drain is where the current
exits. Gate is the control terminal that can either allow or block
voltage flow between the other two terminals. For example, if
there is a sufficient amount of positive voltage at the Gate,
it will allow the current to flow from Drain to Source. If the
voltage at the Gate is too low, the MOSFET will remain off
and no current will flow. In our design, the MOSFET likely
controls the voltage output (Vout) based on the input signal
from the Arduino. This essentially means the Arduino can tell
the MOSFET to turn on (through a control signal to its Gate)
and thus allow the current to pass, or vice versa.

X. SLC GATEWAY REVERSE ENGINEERING

One of the challenges with spoofing a device on the SLC
network is understanding what the SLC firmware does. To
that end, the team worked towards reverse engineering the

firmware in Ghidra. While conducting the analysis of the code,
there were a few sections of code that raised some red flags,
prompting a more in-depth analysis. Within the initialization
function, the system performs a series of Cyclic Redundancy
Checks, or CRC, on a few key sections of code, as well as
stack variables.

Fig. 25. Decompiled View of gen crc function

Fig. 26. Listing View of gen crc helper function

After completing these checks, it verifies them against hard-
coded values to ensure the integrity of the specific locations.
The potential issue comes after this. If the CRCs fail, the



system enters an error correction state. While this state is far
from fully analyzed currently, most of these corrections do
not work to correct errors within the code or local variables
– they fix the peripheral pin values and perform some byte
manipulation. Most of the manipulation conducted on the bytes
are bit shifts, long division, and byte swaps, and conducted on
register values and stack values.

Fig. 27. Decompiled View of byte division function

Fig. 28. Decompiled View of register manipulation function

Further investigation into this section of the code shows
two significant security concerns. First, the debugging/error-
correction loop is controlled by a ”do/while(true)” loop that

uses the system validation to escape the loop by booting into
the main system loop. With physical access to the gateway
device, an attacker could potentially leverage this structure by
inserting or manipulating a single byte to cause the system
to continually fail to validate, thus never booting into the
main loop, effectively causing a denial of service for the
system as a whole. If an attacker could change the hard-coded,
unencrypted CRC value located at 0x0000ff7e (0x26e2), this
would be enough to cause this failure.

Fig. 29. Hard-coded CRC value

The second potential issue is a little more complicated,
however, potentially easier to exploit. Within this debugging
loop, there is a function, ”rec debug transmissions”. This
function receives debugging information from the FM chip,
using the timer control peripheral to ensure that the system
does not end up hung up waiting for the data. It then stores
this byte in memory, which is then passed to another function,
”handle debug rx”, where it is run through a pseudo-switch
structure, where there are four options based on what the
received data is. It will either run through some flash-control
adjustments, a series of calls to the ”register manipulation”
function that adjusts the various registers in distinct ways,
system re-validation that transmits ”ER” if it fails or ”OK”
if it passes to the debug serial port, or uses the buffer section
that is reset on boot to either transmit a message indicating
SLC or FM failure to the debug serial port.

Fig. 30. Schema of how the system handles received debug data

This transmission could be intercepted by an attacker, and
the attacker could instead send the byte that corresponds to



what they would like the system to do, which could cause
unintended functionality, including full system failure.

Further work is needed to verify if either, or even both,
of these potential security concerns are indeed exploitable
vulnerabilities within the system, and, if they are, how they
could be exploited and how to patch them if they are.

XI. SLC INTERPROCESSOR MESSAGE

Identifying the interprocessor message (IPC) in the context
of spoofing a device on the SLC (Signaling Line Circuit)
network is crucial because these messages are the primary
means by which devices communicate and exchange data
on the network. Understanding the structure and content of
these messages allows an attacker to replicate or manipulate
the communication between devices, which is essential for
successfully impersonating a legitimate device.

The IPC message is composed of several key components,
including a header, a 190-byte buffer holding the data of the
message, a footer, and a checksum. The message format is
structured with specific bytes for various functions, such as
byte 5, which represents the gateway’s primary SLC address,
and byte 3 of the header, which indicates the wireless mode (0
for off, 1 for on). Additionally, the data point DAT 00002c51,
which corresponds to the 4th byte of the header, seems to
correspond to a control signal for USCI A1, possibly used
to trigger specific actions, such as turning on or off certain
components. This signal appears to be influenced by the
wireless mode setting, with DAT 00002c51 being set to 0
when the wireless mode is off, indicating a condition for
further operations. The footer, consisting of bytes 195-199,
plays a critical role in message validation, where byte 199
acts as a checksum or CRC, ensuring the integrity of the
data during transmission. Our analysis suggests that byte 195
is initially null during initialization but is set to 1 in the
reset globals function during runtime, potentially indicating
a state change or flag.

XII. CONCLUSION

A. Next Steps

Continuing the team’s effort in deciphering what messages
are encrypted and which are left unencrypted, creating an
RF backdoor attack, and the building of a surrogate device
are all important goals that will further the reverse engineer-
ing attempts. The next steps for the team entail continuing
our investigation into the SLC firmware, as well as reverse
engineering the RF Gateway. We also plan to continue the
development of the surrogate device, to which the Surrogate
Device Schematic 2.2 design has already been developed.
Relating to the understanding of the RF protocols used, we
plan to further support our understating of the OTA protocol
as some fields are still yet to be determined. Similarly, we’d
like to investigate the Serial Protocol used by the gateway as
well as research and use ILSpy to determine fields of the Serial
Protocol used by the SWIFT Tools application and the W-USB
transceiver. Both of these goals support the notion of spoofing

a packet by specifying known fields, potentially targeting a
vulnerability in the system or triggering a certain state.

REFERENCES

[1] A. Bussey, D. Chou, M. Fabregas, and S. Wright, “Swift wireless fire
alarm system analysis,” Apr., 2023.

[2] Leo Rover, “Raspberry pi or arduino – when to choose which?” 2024,
retrieved October 17, 2024. [Online]. Available: https://www.leorover.
tech/post/raspberry-pi-or-arduino-when-to-choose-which

[3] WebbyLab, “Arduino vs raspberry pi: Comparison,” 2024, retrieved
October 17, 2024. [Online]. Available: https://webbylab.com/blog/
arduino-vs-raspberry-pi-comparison/


