SWIFT Wireless Fire Alarm System Analysis

Drew Petry (Advisor)
Research Engineer 11
Georgia Tech Research Institute
Atlanta, Georgia, United States
drew.petry @gtri.gatech.edu

Garrett Brown (Advisor)
Research Scientist 1
Georgia Tech Research Institute
Atlanta, Georgia, United States
garrett.brown @ gtri.gatech.edu

Abstract—Given the increase of large commercial buildings
throughout America, building management has become a bigger
concern than ever, as it becomes less and less possible for one
person to manage a building thoroughly . One crucial system
in these very large buildings is the fire alarm system. These
systems are traditionally wired, however newer developments are
migrating to wireless infrastructure to support expansion of these
systems into larger and more complex places. However, moving
to a wireless infrastructure means that these fire alarm systems
are now being opened up to new methods of attack by malicious
entities. With enough experience an individual could wirelessly
gain control of a building’s fire alarm, and remotely control
the system potentially putting innocent people into dangerous
situations. This ongoing study analyzes the vulnerabilities of
Honeywell’s Smart Wireless Integrated Fire Technology (SWIFT)
system, which integrates wired and wireless communication by
using a gateway communicating with smoke detectors, pull
stations, and other addressable fire devices.

I. SYSTEM INTRODUCTION

The FACP, or Fire Alarm Control Panel, is a wired com-
ponent of any fire alarm system that can receive information
from all wired devices in the system.

The SWIFT system is a commercial wireless fire detec-
tion system that uses a robust mesh network created by the
SWIFT Gateway to integrate wireless devices into an existing
wired system [1]. The wireless gateway is the SWIFT device
that bridges the gap between wired and wireless devices. Thus,
it is the main target for this project, as it controls the mesh
network, which consists of wireless devices, by managing its
formation and configuration while also interfacing the wireless
mesh network with the wired network. In traditional systems,
all components communicate over a wire which connects the
devices. This wire is known as the Signaling Line Circuit, or
the SLC. The FACP the team analyzes is made by Honeywell
and communication is provided to the control panel by its
SWIFT devices.

The gateway has two processors which communicate
with each other through a universal asynchronous receiver-

Aniyah Bussey
College of Computing
Georgia Institute of Technology
Atlanta, Georgia, United States
abussey6 @gatech.edu

Nathan Dailey
School of Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia, United States
ndailey6 @ gatech.edu

Trey Durden
College of Computing
Georgia Institute of Technology
Atlanta, Georgia, United States
tdurden8 @ gatech.edu

transmitter, or UART channel; these are the SLC and RF (radio
frequency) processors, whose main functions are to interface
with the wired devices, and handle wireless communication
and initialize the bootup process, respectively. The gateway
has three firmware update files; they contain the bootloader
firmware, the RF firmware, and the SLC firmware [2].

The SLC chip is one of the primary components of the
gateway that the team is analyzing, and is outlined in blue
in figure 1. This processor’s main responsibility is interfacing
with the physical SLC line, whose primary purposes are to
carry signals between components and provide power for the
addressable device modules in the fire alarm system. The
signals sent on the SLC line both report device status and
provide feedback to the periodic polls of the FACP.

The RF chip is outlined in orange as seen in figure 1, and
it is responsible for managing the mesh network that contains
the wireless devices, relaying wireless device information to
the SLC chip for communication with the FACP, and updating
both itself and the SLC processor when the gateway’s firmware
is updated.

II. PREVIOUS RESEARCH

The previous teams figured out the layout of bytes in the
packets for the OTA (Over-the-Air) protocol; however, how
the payload was specifically parsed remained undiscovered. [3]
The team partially uncovered how messages were received and
stored; they found the loop that waits for payloads and also
analyzed how the CRC verification failure could undermine
that process.

III. RF BACKDOOR ATTACK

A. Patching Preparations

The team uses Ghidra and other software to reverse
engineer the RF firmware files to work towards the primary
goal of identifying methods of gaining control of the system.
Previous teams tried to write exploits in assembly. This

Fig. 1. The wireless gateway board, with various components outlined, such
as the RF (orange) and SLC (blue) processors, as well as the two JTAG
headers (red).

semester the team tested whether or not that was necessary.
The relevant binaries were written for a msp430 processor,
with the specific device being f5437a. After compiling a
simple program written in C, opening the binary in Ghidra,
and verifying the instructions the team concludes that whatever
exploit code that is needed to be written in the future can now
be written in a high-level language.

#include nsp43d.h>
/I #include <msp43ef5437a.h>

int main(void)

{
WDTCTL = WOTPW + WDTHOLD;
PIDIR |= @xe1l;

// Stop watchdog timer
// set P1.@ to output direction
while (1 // Test P1.4

PI1OUT ~= 8x@1;
_delay_cycles(100000);

// Toggle P1.8 using exclusive-OR

msp430-elf-gcc -I /root/ti/msp430-gcc/include -L
Jroot/ti/mspd30-gee/include -mmou=msp430£5437a -02
—g msp430x54xA l.c -0 msp430x54xh 1.0

Fig. 2. Command to compile and example program

B. RF Message Function Analysis

The previous teams were able to obtain source code for
SWIFT Tools, the compatibility software that users can use to
monitor the gateway and other aspects of the wireless fire
alarm system. In this C# source code several enums were
defined. The most obvious and easily distinguishable enum
to find in Ghidra was NodeType.cs, which defined values
with each one representing a specific component of the fire
alarm with an independent purpose and function. Initially,
by using the Ghidra search feature the team was able to
find a small function that has a chain of comparisons to six

namespace Honeywell.WirelessTool.WirelessInterfaces

public enum NodeType
{

InvalidDevice = 8,
Gateway = 1,
Detector = 2,
LCD_UI_Prev = 3

SounderStrobe = 4

MCP = 5,
Strobe = 6,
EsserDetector = 7

HeatDetector Bx18,

SitebSurvey = 28,

PhotolDetector = 36,
PhoteHeatDetector = 66,
MonitorModule = &7,
Pull - 123,

SyncModule = 72,

AVBase = 71,
RelayModule = 69,
GatewayN ia,
AcclimateDetector = 76
UsBAdapter = 99,
DisplayDriver = 181,
Output 182,

Sounder = 183,

Orphan = 184,
NewDeviceRetrievedButNotPrecommissioned = 185,
Unknown = 186,

Repeater = 208

]

Fig. 3. Node Type values

values. Each of these values are located in the NodeType
enum. FUN_000382d4 compares its second argument to the
values that we assume are from the enum: RelayModule,
GatewayN, Pull, AVBase, SyncModule, DisplayDriver. While
knowing what this function does is not immediately relevant,
the fact that it is comparing these values to a specific argument
is crucial. The team traced this parameter back to glean
some insight on where the value is being derived from. The
parameter is a pointer to byte, given that the instructions that
act on are all at a byte level granularity, and this pointer points
to the memory location DAT_00003ccc. At this point the
team established a direct connection to the builds_RF_message
function, which read this memory location four different times.
Additionally FUN_00021236 reads this location several more
times. By simply defining the enums the team gained some
insight into how the builds_RF_message function uses those
values to modify its control flow and the main focus of
FUN_00021236. Relative to the other functions in the binary,
it is medium sized having 120 different vertices in its graph.
Initial impressions of the graph shape and knowing that it
reads DAT_00003ccc_NodeType indicates that the purpose
of this function deals with a subset of the known enums.

| e
=
==
=
“—
-
=
—J
! =
=4 =
i =2
]
=] s
. = .
P — —
= =
— ; |
=] =" =
— e (=]
= -

Fig. 4. FUN_00021236

One comparison block has the following node types: Photo
Detector, Photo Heat Detector, Acclimate Detector, and Heat
Detector. These nodes are referring to the various detection
features that any fire alarm may or may not have. Photo refers
to the photoelectric sensors used to detect smoke and fire, heat
detector refers to the ionization feature that thermal alarms
usually use to detect fires, and acclimate detector is a mix
between photoelectric and thermal alarms. In the figure graph
vertices are grouped and colored to visualize the clusters of
node types. Green represents component type nodes: monitor,
relay, “gatewayN”, and pull. Red represents the heat detector
type nodes mentioned previously. Yellow represents a change
in control flow depending upon whether the node type is
LCD_UI or Gateway. Finally, blue represents checking a
memory location to see whether it refers to SyncModule or
AVBase node types. The flow of this function broadly follows
the following logic: check what components you are dealing
with, verify that you are dealing with either the LCD_UI
or the gateway, check what fire detections are available to
use, communicate with the sync module and AV Bases, then
whatever information that was presumably synced between the
bases informs the LCD_UI and gateway.

Knowing which functions deal with which enums and
which enums are together during comparisons allows us to
discover which Node types are closely related and how groups
of them interact with other groups.

IV. SURROGATE DEVICE

A. Background

A goal that the team prioritized is spoofing a fire alarm
on the SLC network. One specific approach that was taken
was creating a surrogate device that can send spoofed SLC

messages. At the beginning of the semester, the team decided
to use the following components to make the surrogate, but
since then the components have been updated, all of which
which will be discussed later in this paper: raspberry pi, 2
5V relay boards, a breadboard, and wires. In order to achieve
this goal, the team previously decided to insert the surrogate
device into the SLC line, which is daisy chained through all
of the devices, and have the surrogate replicate a an existing
device on the SLC line that would be replaced by the surrogate.
We have since discovered that the surrogate device must still
be added to the SLC line, but instead of replace an existing
device, it must “appear” to be part of the system and replicate
the appropriate address/SLC messages so that the system
doesn’t enter a ”System Trouble” state and just not recognize
the surrogate device. One thing that has remained the same
between the beginning and ending of the semester is how the
surrogate device will have to insert the spoofed messages we
make in order to spoof the fire alarm. This semester the team
focused on confirming the various components that will make
up the surrogate device and crafting the spoofed SLC message.

B. Important functions

1) add_device_??: One function that the team looked
at was add_device_??, as this function seems to play an
integral role in determining what devices are recognized by
the control panel. This would definitely aid in the surrogate
device efforts since we must integrate the surrogate into the
existing system. We came to this conclusion because there
are places in the code where the logic indicates that this
function specifically is involved in the group polling process.
For example, as seen in ***, this snippet of the function is
responsible for counting the number of devices in the system.
Next semester, the team will continue to work towards further
analyzing and configuring the logic in this function so that
the surrogate device can be recognized and counted. This
semester, we decided to gain a better understanding of this
function as a whole, so we did some reverse engineering
work on the add_device_?7? incoming function calls to
better understand the various variables used since they are
used throughout.

2) decode_recieved_ipc_message:
of the functions that the team looked into was
decode_recieved_ipc_message as this is an
important function that will be used within the surrogate
device. This function is quite impactful, as it calls many
other functions, so while we could not decode the entire
function, multiple of its sub-functions have been decoded.
For decode_recieved_ipc_message what we know is
that the input is a pointer in memory to the message location,
since the input is a pointer and not the actual message, the
conclusion has been made that all of the messages are stored
into memory and as such there may be a way to influence
what each message does by changing what the pre-stored
messages are. After some initial data allocation the function
then calls Fun_00029354 which has yet to be decoded, but
then this function calls check_trbl_and_tamper and

Another one

change_trblcnt. These functions both deal with error
correction and data stability.

/* BINDIFF_COMMENT: s« 100.000000% match with 99.330715% confidence using function: hash mat
ook
BINDIFF_MATCHED_FN: sk @00028780 WSG_SLC 3 0.bin@00028780 ik

This function appears to check for tamper and for trouble for a SLC device. This function '
only return false when the tamper count or the trouble count for a device is greater than

bool check_trbl_and_tamper(bool param_1)
{
byte bvarl;
byte bvar2;

bVarl = get_tamper_slc_addr();
bvar2 = get_trbl_slc_addr();

Fig. 5. Header and description of the check_trbl_and_tamper function

/* BINDIFF_COMMENT: sk 100.000000% match with 99.172096% confidence using function: hash mat
HoRK
BINDIFF_MATCHED_FN: sk @0002926a WSG_SLC_3_0.bin@0002926a ik
It would appear that this function looks at the trouble count (global variable) and either
increments or decriments it based upon the input. Returns False only when the trblcnt for
specific device is above @0x65, else returns true */

hool change_trblent(bool param_1)

{
bool bVarl;
byte bvar2;
bvar2 = get_trbl_slc_addr();
if (param_1 == false) {

if (trblent !=0) {
trblent = trblent - 1;

Fig. 6. Header and description of the change_trblent function

check_trbl_and_tamper looks at both the trouble
and tamper memory addresses and returns false if something
has been tampered with or if there is too high of a trouble
count. Since this function checks to see if any tampering
has happened within the SLC message, we believe that this
function could play a big role in the viability of the surrogate
device. If we can figure out what is held at the tamper memory
address of the message that would allows us to circumvent
the tamper check and hopefully have the surrogate device
infiltrate the SLC undetected. change_trblcnt looks at
the trouble memory address and increments the trouble count
accordingly based upon the message that was recieved and
executed. This method only returns false if the trouble count
is greater than 0x65. Both of these functions play a large role
in decode_recieved_ipc_message and the are some
of the lowest level functions that the code is built off of.
By understading these it will help us gain a greater grasp of
the function as a whole, and help in the reverse engineering
process.

C. Physical Hardware

One of the two main challenges for the surrogate device
was coming up with the physical design, as we needed some-
thing that was easily programmable, could interact with the
high voltage SLC network and would have all the functionality
of the wired pull station that it was trying to emulate. We
quickly decided that the most efficient tool to use would be a
micro-controller as they are very easy to program, and due to
the teams familiarity with them. After deliberation we decided

to go with using an Arduino for the “brains” of the surrogate
device. The Arduino was chosen over a raspberry pi due to
the an Arduino not having an OS which means that all the
code that we will run on the surrogate device will have to
go through less levels of complexity than if it was on a the
raspberry pi. The Arduino also offers the benefits of drawing
less power and having dedicated pins that we can easily use
to prototype. The team is also aware that a high signal on port
P1.0 will trigger the message reception handler, however there
is a compatibility issue between the voltages as the voltage of
the SLC is 24v while the Arduino operates at 5v. Due to this
incompatibility, we have concluded that the Arduino would
need supplemental hardware, to both read and send messages
to the SLC.

i

<

-

..

.ee

...

...

. o-e

- ..

3 =
>
2
=1
=g
©o
—
x

=3
D
=
]
"
o~
~
=3
]
o
3
@

Fig. 7. Image of the PCB of a pull station

After we decided on the hardware we would use, the
next task we were faced with was the implementation of the
hardware. We were unsure of how the Arduino would need to
interface with the SLC, and thus what kind of hardware would
need to be designed for it. We concluded that it would be best
to reverse engineer a design from the wired pull station that we
had set up inside of the lab. When taking apart the pull station
we discovered that the PCB had two ICs on board, which
allowed us to realize that the pull station was a state machine,
i.e. not just a simple switch-resistor device. By learning that
the pull station has states that it can enter, the team created a
state diagram for a device on the SLC network.

Discovering the possible states of a device was very
beneficial because we were able to deduce that if a device was
not set up inside the system, then it would be deactivated and
not able to do anything. This meant that the surrogate device
would have to replace an existing device in the network, as
trying to act as a device that was currently not in the network
would lead to an error in the system.

After visual analysis of the pull-station was done, it was
reconstructed, and we used an oscilloscope to see how the
messages were transmitted on the SLC. We discovered that
the messages going into the pull station would fluctuate from

System Reset

This state is
only entered
after a reset,
and device will
not speak on
sLc

system polls -

devices - N

Device not Device Alarm switch is
supposed to supposed to pulled
be in SLC be in SLC

Deactivated [B

System polls
~_devices

System polls
devices B

— Device and
Poll affects all

system will
remain in this
state till a reset
is called

The device will
not respond to
the SLC
messages or
“Speak” on SLC

devices,
whether it is
deactivated or
not

Fig. 8. Diagram showing the possible states of an SLC device

10v to 24v, solidifying the fact that the device would need a
voltage dropper so the Arduino could properly read what was
being sent. When the outbound messages were observed, they
had a structure reminiscent of a sinusoidal wave. The output
would appear to spike to opposite voltages at the same time
(1v and -1v), this meant that the physical hardware would need
to be able to recreate this activity.

‘M 100ms ‘A Cl

v Bar HBar
Units Units
Seconds Base

Function Mode
H Bars Ind

Fig. 9. The output signal of the pull-station, with spikes visible

To achieve this behavior a simple circuit was designed
that uses a DAC to control voltage, giving us two outputs,
one positive and one negative. Then two N-Enhancement
MOSFETs were added to allow for a digital signal to control
which signal, positive or negative, was being sent to the SLC.
Once this output design was considered, a final schematic was
able to constructed. Unfortunately due to time constraints and
lack of materials, this design was never tested and will need
to be implemented in the following semesters.

Op-Pmp Chip TLVzZ4s2Z

Suwsgade Oeice
Schemakic 1@

Vg

ook

On Awrdino ¥ L Comnecks to groumd
Do Ouk % fwputk o omdlog ping
nput pin = AD Potetw ¢ ng-en O digitod
Pos.on=13
nba_m: 1z
Poka ok = 11

Fig. 10. Final Circuit design of the Surrogate Device

This circuit diagram allows of the surrogate device to
read the inputs from the SLC (scaled to 1/5 voltage so that
it will not break the Arduino) and then the output allows for
a negative or positive voltage response. The voltage level is
controlled by the data_out pin, the system acts as a DAC which
converts a duty cycle into a constant voltage. This also allows
for the voltage to be amped back up to 24 volts if needed, as
we can connect the op amp in the circuit to a larger power

supply.
D. SLC device output

When reverse engineering the wired pull-station, the
output of the device on the SLC was observed and recorded.
This allowed the team to understand how the SLC devices
respond to the gateway and also how the gateway knows that
a fire alarm has been signaled in a pull station. The base
frequency of the negative end of the the SLC is the thick band
of signals that lie between 0.2 and -0.8v. The idle frequency
of the Pull station is 10 Hz with it spiking to 1V and -1V
every 100 ms. The variations in the spike heights are due
to the oscilloscope lacking the proper resolution to show the
complete signal. The image below shows the triggered state
of the pull station on the SLC, with the address of 001.

Once the pull station has been triggered the spikes
maintain the same frequency but increase to 1.5 and -1.5V, and
they maintain this until the system has been reset. This spike in
voltage is what shows the system that the pull station has been
pulled, as long as it is high, the system will be alerted. Once
the system resets the SLC goes “dark”, aka the pull station is
no longer sending out pulses, until about 1 second after it goes
dark where the pull station sends a bloop to the SLC. This is
most likely the response to what devices are in the system that
is sent out by the gateway. After the bloop the system waits
for 1.5 seconds then starts spitting out the idle pull station
frequency. This response is something the the future surrogate
device team will need to focus on, as if the surrogate device
cannot properly respond to it during a system reset then it will
be shut of from the system. A portion of code was written to
copy the behavior that was shown in this section, to be tested

28 Nov 2023
14:44:43 |

Fig. 11. Triggered state of SLC leaving the pull-station.

on the surrogate device when it has been prototyped, it can be
seen in 12.

E. SLC Message Structure

In order to craft the spoofed SLC message(s) that would
be put on the surrogate device, we had to gain a better
understanding of the structure of the SLC regularly sent out
by the pull station. To do so, an oscilloscope was used to take
captures of the messages sent by the pull station during both
idle and alarm states. As seen in 13, idle SLC messages sent
came in 17-bit intervals. The SLC messages sent during the
alarm state, meaning when the pull station was triggered, were
also sent in 17-bit intervals like what can be seen in 14. Both
are significant because this corresponds to the 17-bit address
word and command word combination that is described in the
FlashScan patent [4] and what can be seen in 15.

V. CONCLUSION
A. Next Steps

Continuing the team’s efforts in creating an RF backdoor
attack is an important goal for the future, and it will involve
further analysis of the RF firmware. With payload storage and
verification explored, the team will need to deduce what is
done with the data after the aforementioned steps. Although
efforts to reverse engineer them have not been successful,
functions that perform payload parsing are likely tightly cou-
pled with functions that have already been analyzed. Given
the team is able to fully reverse-engineer the parsing logic,
it will be possible to edit the firmware in preparation for the
backdoor, and the W-USB or a software-defined radio will be
able to trigger it.

The team will also continue to reverse engineer
the functions in the binary files associated with the
slc_normalish_dump?2.bin file in to further understand
the functions, so that we can alter them to serve the purposes
of the surrogate device. Another eventual goal is to draft

void setup() {

int input_pin = A®; //This pin will control when we turn on the signal
int pos_en = 13; //this pin enables the high part of the signal

int neg_en = 12; //this pin enables the low part of the signal

int data_out = 11; //This pin will control our output voltage

int sensor_value = @; //voltage level of input

int trig = 2; //pin for the switch to be connected to

int val = @; //trigger value

pinMode (pos_en, OUTPUT);
pinMode(neg_en, OUTPUT);
pinMode(data_out, OUTPUT);
pinMode (input_pin, INPUT);
pinMode(trig, INPUT);

}

void loop() {
val = digitalRead(trig);
if (val == 8) {
analogWrite(data_out,51); // output 1V
} else {
analogWrite(data_out,77); // output 1.5V AKA Triggered ALARM
¥

sensor_value = analogRead(input_pin);
//1f the input voltage has surpassed 20V (SLC sends a message)
// the surrogate device will sent back a single period of a 10@HZ
// digital wave, This is to mimic the behavior that was observed
//on the oscilloscope
if (sensor_value > 820) {

digitalWrite(pos_en,HIGH);

delay(50);

digitalWrite(pos_en,LOW);

digitalWrite(neg_en,HIGH);

delay(50);

digitalWrite(neg_en,LOW);

Fig. 12. Image depicting the Arduino code that uses the implemented
surrogate device design.

and implement the spoofed SLC message that will be put
on the surrogate device once it is assembled, which can
be achieved by using the previous research concerning SLC
message structure and continuing our current RE efforts.

The next steps for the surrogate device will be to physi-
cally build the device that was designed this semester, as well
as test out the simple code that was created for it. The system
is not terribly difficult to build the lab just lacks the parts
needed and as the semester wrapped up time was short. The
simple code for the device needs to be tested to see if it can
perform its job, or if a new approach is needed. The physical
design is stable and all that is needed is it is to be constructed.

After the surrogate device is constructed the next step that
needs to be done is implementing the ability for it to read and
respond to the SLC messages that are sent by the gateway. If
the surrogate device is able to accurately read what the SLC is
saying then it will be able to blend in better, thus reducing the
risk of the surrogate device flagging an error in the system.
Ultimately, the potential of the surrogate device is limitless
once it is able to decode SLC messages, so giving it that
capability should be the main priority of the surrogate device
next semester.

P TFPUFIPE P (PP NN B S

.:- ATA A . AnAAAAARARAR AR
1N 1

8 Nov 20
154007

1'M4.00ms 4

I B+~ 16.2800ms
H Bar

. Se e Units
. Base

Fig. 13. This image depicts captures taken from the oscilloscope when the
pull station was in an idle state.

Function
off

Fig. 14. This image depicts captures taken from the oscilloscope when the
pull station is in an alarm state.

REFERENCES

[1] Detectors. [Online]. Available: https://www.securityandfire.honeywell.
com/notifier/en-us/browseallcategories/wireless/swift/detectors

[2] Texas Instruments. SWIFT™ Smart Wireless Integrated Fire Technology
Manual. [Online]. Available: https://prod-edam.honeywell.com/
content/dam/honeywell-edam/hbt/en-us/documents/manuals-and- guides/
user-manuals/LS 10036-000FL.pdf?download=false

oy
S U e T LT L Fig. 2
[N R T
ADDRESS COMMAND
10 NEXT
— ADDH\'
l

,_ n ‘0"

E——H—I

A8 AT A6 AS M A3 A2 Al A0 GO G8 G7 GE G5 G¢ G3 G2 G1 GO B2 B BO P

UNIT INFO.
RETURN

PLUR IDENT. UNIT IDENTIFIER BITS CONTROL

Fig. 3

ESCAPE CODE

Fig. 15. This image depicts the part of the FlashScan patent that describes
the 17-bit address word and command word combination that makes up SLC
messages.

[3] A. Bussey, D. Chou, J. Y. Kim, S. Suman, S. Wright, and D. Keskin,
“Swift wireless fire alarm system analysis,” Nov. 2022.

[4] E.Bystrak and A. Berezowski, “Enhanced group addressing system,” U.S.
Patent 5539389, Jul. 23, 1996.

