
CSAW Embedded Security Challenge Fall 2023
Final Paper

Levi Doyle
Georgia Tech
Atlanta, U.S.

ldoyle9@gatech.edu

Adith Devakonda
Georgia Tech
Atlanta, U.S.

adevakonda3@gatech.edu

Madelyn Novelli
Georgia Tech
Atlanta, U.S.

mnovelli3@gatech.edu

John Zhang
Georgia Tech
Atlanta, U.S.

jzhang3213@gatech.edu

Abstract—The 2023 CSAW Embedded Security Challenge
focuses on side channel attacks (SCAs) on cyber-physical systems
(CPS). The competition phase put side channel knowledge into
practice as teams attempted to retrieve flags from an Arduino
based system running various programs.

I. INTRODUCTION

The competition phase of the 2023 CSAW Embedded
Security Challenge spanned three weeks, during which two
challenges were released each week. The challenges were to
be run on an Arduino Uno R3 board with provided peripherals,
including a relay, keypad, speaker, microphone, vibration
motor, and seven-segment display. During the three weeks, the
team were only able to receive the flag for the Vender Bender
challenge. Guides to the challenge solutions were released by
CSAW after the competition period, which the team used to
successfully receive the flags for all of the challenges except
All White Party.

II. SETUP

The team primarily used the Arduino IDE and its built-in
serial monitor to analyze and complete the given challenges.
A phone is used to record the Arduino for the Bluebox,
SPItFire, and czNxdTNuYzM challenges. For the Bluebox
challenge, the team also utilizes a guitar tuning app to record
the frequencies of sounds output by the Arduino.

III. ALL WHITE PARTY

A. Overview

This challenge simulates a username and password inter-
face. The user is prompted for a username over serial port. If
the username is incorrect, the Arduino vibrates and then sends
an ’Incorrect Username’ message. If the username is correct,
the user is then prompted for a 10 digit 2FA pin on the keypad
upon receiving the correct username. Upon entering the correct
pin, the user is granted access to the system. An incorrect PIN
causes to Arduino to quickly vibrate and the login process is
restarted.

B. Challenge Period Attempt

The challenge description gave the hint of ”time” for this
challenge. This led the team to search for a solution using a
timing attack, which involves analyzing the running time of a
system. [4] After experimenting with continuously inputting

Fig. 1. All White Party running in the Arduino IDE serial monitor

Fig. 2. Input Delay Differences

usernames in the system at a rapid pace, we found that
while the Arduino is vibrating, it will not process the next
username input until it finishes its vibration and sends its
’Incorrect Username’ message. This allowed the team to have
consistent timing with our inputs, and using the timestamps
provided by the serial monitor in the Arduino IDE allowed
us to measure inputs. The team started with single character
inputs with every possible input, and saw a consistent delay
of around 1.7-2.2 seconds before the system responds. The
only significant outlier was ’B’, which caused a 2.5 second
delay. Seeing that the username was likely a normal word,
the team then tested with variations of ’B’ followed by a
vowel, and found that ’Ba’ was also a significant outlier at 2.7
seconds from the 2.4-2.5 second range of the other variations.
The search for the next character found early that ’Bar’
created a 3 second delay while other inputs averaged 2.79-
2.82 seconds. Enough information was gathered to correctly
guess that the username was ’Barry’ and move on to the
password portion of the challenge. However, the passcode
was not able to be determined with the same method. All 10
digits of the passcode needed to be inputted before the system



would process it, and the Arduino IDE timestamp only counted
when the first digit of the passcode was entered. The Arduino
also did not follow the same vibration and delay process as
the username, so we were unsure how much our previous
method would apply. The ’Incorrect Password’ message also
included a set of numbers, which the team found would change
upon inputting ’Barry’ again into the serial monitor before
fully entering the passcode, and then making further inputs.
However, progress on the challenge halted after this point. To
mitigate the possibility of a timing attack on the username
entry, an artificial delay can be added that would increase
the amount of characters needed to have a measurable time
difference and therefore greatly reduce the practicality of a
timing attack. Finding a way for the Arduino’s vibration to
be asynchronous from processing an input could also present
another possible solution.

C. Post-Challenge

Due to time constraints, the team was unable to obtain the
flag for All White Party. However, the challenge solutions
show a method that can be used to obtain the flag. While
’Barry’ was a valid username, the system only checks the
first five bytes of input, so the system would accept any
username as valid if it started with ’Barry’, such as ’Bar-
ryyyyy’, ’BarryWorlow’, or ’Barry3d4j37l36’. Teams in the
challenge were intended to use this information to find a
combination of a username beginning with ’Barry’ and a 10-
digit password that created a SHA1 hash collision, meaning
they share the same hash. The matching password would be the
correct password to enter the system. According to the solution
description, a program comparing two sorted dictionaries of
eligible usernames and passwords would be able to quickly
find a hash collision. [1]

IV. BLUEBOX

A. Overview

The premise of this challenge is to recreate different com-
binations of audio tones using keypad inputs. Each key on the
numpad correlated with a specific frequency, likely mimicking
a dual-tone multi-frequency (DTMF) telephone pad. Once the
first four frequencies are recreated, an eight-note tone is played
and must also recreated in order to successfully complete the
challenge.

B. Challenge Period Attempt

The nature of the challenge seemed to indicate that acoustic
cryptanalysis, an emissions-based side-channel attack in which
audio data is gathered with the intention of gaining critical
information about the device, was the correct solution. [2]

C. Post-Challenge

A frequency analyzer app was used to record the tones
played by each key. However, there were inconsistencies in
the app, so a instrument tuning app was used instead to record
the frequency of each key. Then the tuning app’s results were
recorded when a new sequence was played so the tones could

Fig. 3. Frequency Table

Fig. 4. Success Message for Bluebox

be replayed and identified. Once the correct 4 tone sequence
was entered, a new sequence was played with 5 distinct
changes in tone, but with 2 tones held. Incorrectly entering
it would return to the previous stage, but correctly entering it
would yield success chimes and a message on serial stating
that the flag was the key sequence used to replay the tone:
”B339B009”.

V. OPERATION SPITFIRE

A. Overview

This challenge’s premise is accessing a security camera.
The serial monitor states that the Arduino is receiving the
message ’HELLO’ while the relay on the Arduino board clicks
repeatedly in a pattern, turning on and off a light attached to
the relay. The serial monitor then prompts the user to enter the
message ’FLAG’ in hex using the correct formatting in order
to establish communication with the camera.

B. Challenge Period Attempt

At first, we believed that the relay’s clicks resembled
Morse Code. However to translate it as Morse code yielded
inconsistent results proved difficult and we would end up with
messages such as ”IISEESTETEM”. The team was unable to
make much more progress past this point.

C. Post-Challenge

The solutions to the challenges revealed that the clicking of
the Arduino during the transmission of the ”HELLO” message
was binary, with the relay light being on representing 1, and
the light being off representing 0. [1] Recording the message
with a phone and analysing the outputs allowed us to translate



Fig. 5. CRC found at https://crccalc.com/

Fig. 6. Success message for SPItFire displayed as the Arduino plays the flag
relay

the message into hexadecimal (A50548454C4C4F39), which
helped the team to find the correct format to send ”FLAG” in.
Sending ”FLAG” in hex (464C4147) produced an ”Incorrect
Header” message. Sending the same message the first byte of
the header message of the ”HELLO” message (A5464C4147)
passed the header check and gave us an ”Incorrect Length”
error. Analyzing the ”HELLO” message once more shows
that after the header, the next byte is 05 followed by the
bytes for ”HELLO” in hex. 5 is the length of ”HELLO”,
so the team added the length of ”FLAG” to our message
(A504464C4147), but still received an ”Incorrect Length”
message. After noticing that the ”HELLO” message had an
extra byte after the hexadecimal for ”HELLO”, the team
added an arbitrary extra byte to the end our message. This
passed the length check and gave a new ”Bad CRC” message.
CRC, which stands for Cyclic Redundancy Check, appears to
serve as an extra byte on the data that allows for checking
for corruption, meaning ’A504464C4147’ has a specific CRC
byte that goes with it. This was easily found with an online
tool (https://crccalc.com/). The completed ”FLAG” message
(A504464C4147DA) is accepted by the system and causes the
Arduino the transmit a new message through the relay, and
prompts the user to translate the message and enter it into our
paper as the flag. The message was much longer than the hello
message, making translation more difficult. After analysis of a
video of the relay sequence, the flag seems to be ”Spy Burned”
if not slightly altered.

VI. CZNXDTNUYZM

A. Overview

This challenge sends its own name over serial port followed
by the string:

Fig. 7. Success message for czNxdTNuYzM

”QSBzb3ByYW5vIG9mIHNvdW5kLCByZWFjaGluZyBm
b3IgdGhlIGhlYXZlbnMu”

It asks for the next in the sequence as alphanu-
meric characters after the board finishes presenting a
sequence of numbers and underscores on the seven
segment display. Observing a recording of the seven-
segment display on the Arduino board yields the sequence:
”1.2.6.2 4.12 0.2 0.1 4 0.1 1 2 0.1 0 0 8 0.1 0 0 8.1 8
.9 2 4.1 20 2.85 8.1 2 8 7 0.2 0 5 9 2 0.3 5 0 0 6 4
0.1 94 8.3 6 9 5 1 2 0.1 8 4 7 5 6.3 8 7 9 8 7 6.2”

B. Challenge Period Attempt

The team found that no features of the numerical sequence
appear to align with the string. The sequence features only four
numbers with 2 digits and has varied lengths for sequences of
underscores. The team was unable to come up with a potential
solution for this challenge in time.

C. Post-Challenge

Rewriting the sequence as numbers shows a possible pattern
since many of the first few inputs are multiples of each other if
the underscores are to be understood as connecting the digits
of numbers. The length of time periods were held for implies
they likely separate the numbers. Rewriting the numbers gives:
1, 2, 6, 24, 120, 20, 140, 1120, 10080, 1008, 18, 924,
1202, 858, 12870, 205920, 3500640, 1948, 3695120, 184756,
3879876, 2 There appears to be ascending sequences but they
are followed by varying amounts of decreasing numbers or
smaller numbers. Taking the ratio between numbers gives: 2,
3, 4, 5, 1/6, 7, 8, 9, 1/10, 1/56, 154/3, 601/462, 429/601, 15,
16, 17, 487/875160, 923780/487, 1/20, 21, 1/1939938. A hint
demonstrates that the sequence increases by the increasing
ratio unless the number is divisible by the number and that
some of the numbers were observed incorrectly. By calculating
the latter half of the sequence and several additional numbers
in the sequence, it can be checked against the sequence shown
on the board to identify the next number. By observing the
display, the final number ends with ”234”. Comparing it with
numbers in the sequence, it aligns with the 23rd number in
the sequence. The 24th number is ”97,349,616” and entering
it yields that it is the flag for the challenge.



Fig. 8. ”SOCKS” translated into Morse Code. The
Arduino beeping correlates with the dots. Website used:
https://morsecode.world/international/translator.html

VII. SOCKANDROLL

A. Overview

This challenge presents the premise of escaping a locked
room in a sock factory using a communication device in the
room. Over serial port, the device sends a message in French
that translates to ”It’s out. Help us. Help us.” The speaker
on the Arduino board outputs a beep several seconds long,
then shortly beeps three times in succession each, followed
by another long beep before pausing then repeating, while the
speaker plays background whirring noises. The microphone
on the Arduino records the beeps, and the program interprets
them. Between repetitions, the serial port sends the message
”Glad to know things are okay. Enjoy your time at the
factory!”

B. Challenge Period Attempt

The team found that the beeping does not align with the
convention for an S.O.S., and was not able to make any further
progress in time.

C. Post-Challenge

The challenge solutions revealed that the beeping and
whirring output by the Arduino Speaker is a Morse Code
transmission of ”SOCKS.” Teams were intended to disrupt
transmission during ”CK” in order for the message to read
”SOS.” [1] Upon analysis of the beeping message with Morse
Code in mind, the team discovered that the long beeps
corresponded with ”S” that appears at the beginning and end
of ”SOCKS” and ”SOS.” The three shorter beeps in between
are used for the transmission of ”CK.” The peripherals on the
Arduino are easily detachable, so the microphone is easily able
to be detached and re-attached to manipulate the message that
is recorded by the Arduino. By letting the microphone read
the long beep to transmit ”S,” waiting a short period for ”O”
to be transmitted, then detaching the microphone before the
three short beeps and re-attaching it when the second long
beep plays to transmit the second ”S,” the message ”SOS” is
received by the microphone and the challenge is completed.
The program gives the flag ’f0otNOt3.’

Fig. 9. Success message for SockAndRoll

Fig. 10. Success message for Vender Bender

VIII. VENDER BENDER

A. Overview

This challenge prompts over serial port to send the string
”ERR” over serial when a token is received to attempt to
jam a motor. The relay module clicks back in forth at regular
intervals, and a successful motor movement message is sent
over serial port followed by a repeat of the other message.

B. Challenge Period Attempt

By observing the timing of the messages and relay, we
found that the second click following the instruction to send
”ERR” is timed closely with the successful motor movement
message. Sending the message at the same time as the second
click causes a new message to show up on serial port and a
new set of two clicks of the relay at a different timing. The new
message states that there was slight motor movement and gives
a count that it is one of five. By continuing to send ”ERR”
during every second click, successive sets of relay clicks and
slight motor movement messages occur. The 5th consecutive
motor movement message becomes a success, which grants
the success message over serial port with sounds of fanfare
on the board, revealing the flag ’mMmCaNdY’.

Treating the situation as if we are actually jamming the
motors of a vending machine, we are performing a fault
injection attack. We introduce ’faults’ (jam the motors) and
cause sensitive data (food in the vending machine) to become
visible when it should not be (the food was not paid for),
which fits the definition of a fault injection attack. [3] Possible
mitigations for this side channel attack include preventing the
vending machine’s motors to be locked on command when in
a vulnerable state, or simply removing the ability to manually
lock the motors.

REFERENCES

[1] Folkerts, Lars. (2023, November 15) Solutions. GitHub.
https://github.com/TrustworthyComputing/csawesc2023/blob/main/Solutions.md



[2] Genkin, D., Shamir, A. and Tromer, E. Acoustic Cryptanalysis. J Cryptol 30,
392–443 (2017). https://doi.org/10.1007/s00145-015-9224-2

[3] Giraud, C. (2005). DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa,
A. (eds) Advanced Encryption Standard – AES. AES 2004. Lecture
Notes in Computer Science, vol 3373. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/11506447 4

[4] Karthik, S. (2020, December 23). Introduction to Timing Attacks!. Medium.
https://medium.com/spidernitt/introduction-to-timing-attacks-4e1e8c84b32b


