
SWIFT Wireless Fire Alarm System Analysis
Drew Petry (Advisor)
Research Engineer II

Georgia Tech Research Institute
Atlanta, Georgia, United States

drew.petry@gtri.gatech.edu

Garrett Brown (Advisor)
Research Scientist I

Georgia Tech Research Institute
Atlanta, Georgia, United States
garrett.brown@gtri.gatech.edu

Aniyah Bussey
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

abussey6@gatech.edu

Daniel Chou
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

dchou33@gatech.edu

Manuel Fabregas
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

mfabregas3@gatech.edu

Sidney Wright
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

swright@gatech.edu

Abstract—Given the prevalence of large commercial buildings
and offices, building management systems have scaled to meet the
perpetually increasing requirements. One such example is the fire
alarm system. Although traditionally wired, newer developments
are migrating to wireless infrastructure to support convenient
expansion of sensors and pull stations. However, a byproduct
of wireless advancement is the addition of new attack vectors
to exploit fire systems. An experienced malicious actor could
gain control of a building’s fire alarm through wireless means,
and they could remotely spoof and suppress alarms at will,
leaving those in the building in a dangerous situation. This
ongoing study analyzes the vulnerabilities of Honeywell’s Smart
Wireless Integrated Fire Technology (SWIFT) system, which
integrates wired and wireless communication by using a gateway
communicating with smoke detectors, pull stations, and other
addressable fire devices.

I. SYSTEM INTRODUCTION

The FACP, or Fire Alarm Control Panel, is a wired compo-
nent of any fire alarm system, and used to control the functions
of other systems in the fire alarm system, as well as receive
information from all wired devices in the system.

The SWIFT system is a commercial wireless fire detection
system that uses a robust mesh network to integrate the SWIFT
gateway and the wireless devices into an existing wired system
[1]. The wireless gateway is the SWIFT device that bridges the
gap between wired and wireless devices. Thus, it is the main
target for this project, as it controls the mesh network, which
consists of wireless devices, by managing its formation and
configuration while also interfacing the wireless mesh network
with the wired network. In traditional systems, all components
communicate over a wire which is daisy-chained through all
devices. This wire is known as the Signaling Line Circuit, or
the SLC. The FACP the team analyzes is made by Honeywell
and communication is provided to the control panel by its
SWIFT devices.

The gateway has two processors which communicate
with each other through a universal asynchronous receiver-
transmitter, or UART channel; these are the SLC and RF (radio

frequency) processors, whose main functions are to interface
with the wired devices, and handle wireless communication
and initialize the bootup process, respectively. The gateway
has three firmware update files; they contain the bootloader
firmware, the RF firmware, and the SLC firmware [2]. The
team uses Ghidra and other software to reverse engineer
the previously mentioned firmware files to work towards the
primary goal of identifying methods of gaining control of the
system.

The SLC chip is one of the primary components of the
gateway that the team is analyzing, and is outlined in blue
in figure 1. This processor’s main responsibility is interfacing
with the physical SLC line, whose primary purposes are to
carry signals between components and provide power for the
addressable device modules in the fire alarm system. The
signals sent on the SLC line both report device status and
give instructions to the devices on the panel. For the purposes
of this project, the team is trying to reverse-engineer the
gateway’s SLC chip firmware. Doing so can reveal details
about the specific instructions and commands the SLC chip
sends to the fire alarm system so that the team can learn from
it and eventually use that information to control the system.

The RF chip is outlined in orange as seen in figure 1, and
it is responsible for managing the mesh network that contains
the wireless devices, relaying wireless device information to
the SLC chip for communication with the FACP, and updating
both itself and the SLC processor when the gateway’s firmware
is updated.

II. PREVIOUS RESEARCH

Earlier research led the team to discover an authentication
bypass that could allow unauthorized parties to gain access
to the system. By default, once the gateway is locked, a new
password must be created to unlock the gateway. Additionally,
a Hall effect sensor is used to check the presence of a physical
user. Sniffing the connection between the SWIFT tools and the
gateway using Serial Port Monitor led the team to discover the



Fig. 1. The wireless gateway board, with various components outlined, such
as the RF (orange) and SLC (blue) processors, as well as the two JTAG
headers (red).

general authentication flow, which revealed that it is possible
to unlock the gateway without the use of a password by simply
using a part of the authentication process. However, this attack
still requires the physical presence check to succeed [3]. In
turn, this requirement can also be circumvented; by placing the
gateway into bootloader mode and issuing a reboot command
packet, the gateway can be unlocked. Entering bootloader
mode does not require physical presence authentication, and
once completed, an attacker or other unauthorized party has
access to upgrade or downgrade the firmware [3].

The team further verified that it is possible to upload custom
firmware on SWIFT’s gateway. The SWIFT system performs
firmware integrity checks using a cyclic redundancy check
(CRC) algorithm when a new firmware is uploaded. Once the
firmware is uploaded, it compares its CRC with a hard-coded
CRC value within the firmware image to verify its integrity.
The team created a tool that mimics the CRC calculation for
any arbitrary firmware, the result of which can be inserted
into the firmware itself, guaranteeing that the integrity check
passes when uploaded to the gateway. Ultimately, this allows
any unauthorized party to replace the gateway’s firmware with
any arbitrary image [4].

The team had attempted to reverse-engineer the SLC proces-
sor’s firmware with two goals in mind: to understand the SLC
wire protocol, and to send arbitrary SLC messages using the
previous vulnerability that allows attackers to upload modified
firmware into the gateway. Through continuity testing, the
team identified pins 1 and 3 on the upper JTAG header as being
linked to the universal serial communication interface (USCI)
pins of the SLC processor, specifically, those for USCI port
A1, which are used to expose the SLC chip’s debugging output
[5]. The team identified all necessary pins for debugging
the SLC processor, permitting dynamic analysis of the SLC
chip and improving the team’s capability to decode the SLC
protocol by examining the SLC messages as they are created

Fig. 2. Schematic showing how SLC chip pins P1.0 and P1.5 are connected
to the SLC line

and sent. Bit 5 of the SLC chip’s byte-wide general-purpose IO
(GPIO) port 1 (pin 1.5) was found to be the likely method used
by the gateway to send SLC messages. The SLC port 1.5 pin
is configured during the SLC chip’s “initialization” function as
output and is connected to the base of a Darlington transistor,
whose collector is connected to the shared SLC OUT wire,
and whose emitter is connected to the SLC ground. When the
pin asserts a logic high, it will short the SLC line to ground.
Since SLC messages consist of logic lows, this constitutes the
SLC message-sending capabilities to the gateway [5].

III. GATEWAY INTERACTION WITH SLC

A. Communication Pins

As the team had established previously [5], the SLC chip is
able to send messages on the SLC line through bit 5 of port 1
(P1.5). However, the question of how it could receive messages
remained open. Continuity tests done by the team revealed that
the SLC line going into the gateway is also taken as input to
a high-voltage comparator, whose output leads directly to bit
0 of the SLC chip’s port 1 (P1.0), as seen in figure 2. Logic
captures taken of that pin, as seen in figure 3, confirm that the
comparator effectively acts as a step-down transformer for the
SLC line, in addition to inverting the signal, as SLC messages
are transmitted by shorting the loop [6].

B. Circuit Analysis: Comparator Inputs

Previously, the team focused on the U5 comparator chip,
which is used to draw 60 milliamperes to drain current over
a wide range of voltages [7]. The comparator is outlined in
figure 5 in a red box. During this previous research, the team



Fig. 3. Logic capture of SLC chip pin P1.0 and SLC line, confirming use of
P1.0 as SLC input for SLC processor

was able to find out that the comparator’s output pin connects
to the SLC P1.7 pin. Because of this, the team established that
the comparator chip’s input pins’ paths must be found. To do
this, continuity tests using a multimeter were conducted. Initial
tests revealed that the top input pin, labeled with 1IN- as seen
in figure 5, was connected to the R38 resistor, while the bottom
input pin, labeled with 1IN+ in figure 5, is connected to the
R31 resistor. Upon further testing, the team discovered that
the comparator’s 1IN- input connects to the SLC input via a
previously discovered path, and this path is outlined in lime
green from the input pin to the R38 resistor, and hot pink
from the R38 resistor to the SLC input wire, both of which
are outlined in figure 5. After conducting more continuity tests
on the 1IN+ pin, the team discovered that the path, which is
outlined in maroon in figure 5, leads to ground. Therefore,
the SLC P1.7 path seems to perform the same comparison
between the SLC and ground as the SLC chip’s port 1 (P1.0),
so the two pins appear to serve the same purpose. To further
corroborate the team’s findings from both the current and last
semester, logic captures were conducted on the SLC chip’s
pins and U5 comparator chip’s pins that connected to paths
that the team identified. More specifically, Logic Analyzer was
used to confirm the cyan/blue path identified and was done
by conducting a logic capture on the SLC chip’s P1.0 pin
and the U5 comparator chip’s 2OUT pin. As seen in figure
6, because the captures are the same, the identified path is
correct. This process was repeated when the team confirmed
the lime green/pink path by using Logic Analyzer

C. Logic Analysis

To further corroborate the team’s findings from both the
current and last semester, logic captures were conducted on the
SLC chip’s pins and U5 comparator chip’s pins that connected
to paths that the team identified. More specifically, Logic
Analyzer was used to confirm the cyan/blue path identified
and was done by conducting a logic capture on the SLC chip’s
P1.0 pin and the U5 comparator chip’s 2OUT pin. As seen in
figure 6, because the captures are the same, the identified path
is correct. This process was repeated when the team confirmed
the lime green/pink path by using Logic Analyzer. Since the
captures between the U5 comparator chip’s 1IN- and 2IN-
pins are the same as seen in the figure 7, the team was able
to confirm the identified path.

Fig. 4. Zoomed in capture of the gateway, with the U5 comparator chip
outlined in red

Fig. 5. The U5 comparator chip’s input paths are outlined in the figure above.
The 1IN- input is outlined in lime green, and it connects to the path of the
SLC input, which is outlined in hot pink. The 1IN+ input path is outlined in
maroon and connects to ground.)

Fig. 6. The path between the U5 comparator chip’s 2OUT pin and the SLC
chip’s P1.0 pin is confirmed with the above logic capture. Because the digital
and analog logic readings are the same, we know the blue and cyan path the
team identified is correct.



Fig. 7. The path between the U5 comparator chip’s 1In- and 2In- pins is
confirmed with the above logic capture. Because the digital and analog logic
readings are the same, we know the lime green and path the team identified
is correct.

D. SLC Message Processing

With methods for both SLC input and output known, the
team was able to start focusing effort on reverse engineering
the structure of SLC messages. First, the team utilized Ghidra’s
cross-reference feature to find references in the SLC firmware
binary to the two pins of note. While there are several writes
to P1.5, there is only one read from P1.0, and during normal
operation, all accesses to those pins ultimately derive from
two functions: one at address 0x5cd2, and the other at 0x5d62.
Though these are not called directly, their addresses are located
in a large jump table that is itself referenced in the chip’s
interrupt vector table as documented in the processor datasheet
[8], as the handlers for interrupts from port 1 and timer A0,
respectively.

To further the goal of understanding the SLC message
structure, the team prioritized reverse engineering the message
reception functions over those for transmission. The one
reference to P1.0 is in a function at address 0x2b106, which
reads the value at that pin multiple times, waiting for two
possible time intervals between each read, and ultimately
returns a boolean value. The values returned are both saved
directly into memory and also used to determine different
control flows in the rest of the handler, so the team’s current
hypothesis is that multiple shorts of the SLC line constitute
one logical bit of SLC message, which is level of abstraction
that the gateway deals with. This would be able to explain
previous confusion about logic captures of the SLC during
both idle and alarm states appearing to be identical; if multiple
transitions correspond to one logical bit, then the identical
capture patterns are simply the same bit, instead of the same
message, as previously assumed.

Returning to the interrupt handler functionality, the port 1
handler seems to implement a finite state machine (FSM), with
each logical bit of SLC message being its own state. On every
port 1 interrupt, which happens whenever those interrupts are
enabled and any of the 8 pins which make up port 1 is driven
high, the handler will increment a global counter representing
the bit’s number before getting the logical SLC bit, then doing
some work that depends on the bit number and the previous
bits of the message. This setup logically follows from the
serialized nature of the SLC messages.

Fig. 8. Representation of the FlashScan common message header, as presented
in the FlashScan patent [9].

Fig. 9. Example of a single device polling message. This particular example
polls control unit 99.

E. SLC Message Structure

The team had previously examined a patent for the Flash-
Scan protocol filed by Honeywell in 1996 [9]. FlashScan is
Honeywell’s proprietary SLC protocol extension and imple-
mentation which provides lower device polling latency, higher
polling bandwidth, and is capable of addressing more devices
than the standard CLIP protocol. Though the patent details
different message types, structures, and purposes, the team
was unsure to what degree those semantics had been retained
in the nearly 30 years since the patent was filed.

As described in the patent, FlashScan has two types of
messages sent by the FACP: single device polls, and device
group polls. Devices are grouped based on the combination
of their SLC address’s tens and hundreds digits; for example,
a device with address 115 would belong to group 11. Both
message types share a common 9 bit header. The first bit
determines whether the message is intended for a controller
module, such as a beacon or siren, or a detector module,
such as a smoke or heat detector. The next four bits represent
the SLC group number. The last four bits represent the ones
digit of a single device’s address if below 10, or otherwise
represents an “escape code” for a device group poll. The
structure of the common header can be seen in figure 8.

For single device polling messages, the common header is
followed by three bits representing the “command” requested
by the FACP, then ended with a single parity bit, which
mitigates the potential of message corruption. An example can
be seen in figure 9.



Fig. 10. Example device polling message with an explicit group member
mask. This particular example selects detector units 5 and 8.

Fig. 11. Example of the body of a device group polling message with no
explicit group member mask. This would be preceded by a common header
similar to the one shown in figure 8.

The patent presents two different types of device group
polls. The first type is exemplified in figure 10. In this case,
the common header is followed by 10 bits acting as a mask of
which devices within the group are to respond to the message.
Similar to the single device poll, this is then followed by
three command bits and one parity bit. The patent allows
for devices to respond in either digital or analog form after
receiving the message. In contrast, the patent then presents
the second group polling message structure, as seen in figure
11. This represents the command field using six bits, uses
two checksum bits instead of a single parity bit, allows for
bidirectional communication during the “information” period
after the checksum, and contains no mask of selected devices.
Though the example illustration from the patent shows 10
subdivisions of the information interval, it clarifies that devices
may be allocated multiple subdivisions, and that the total
number need not necessarily be fixed.

Returning to the FSM in the SLC chip’s firmware respon-
sible for processing messages received from the SLC line, it
seems that the semantics of the first message bit as a flag
for distinguishing between seems to have been preserved. As
seen in figure 12, one of the uses of bit 1 is to decide which
of two arrays to read from,. These two arrays are referenced
elsewhere alongside logging output mentioning ”MOD” and
”DET”, which would be short for ”module” and ”detector”,
respectively, with a value of “0” seeming to still represent
detectors, while “1” signifies a controller, as in the patent. This

Fig. 12. Example of message bit 1, stored in BOOL_00003039, used to
distinguish access to different arrays

Fig. 13. Decompiled output from Ghidra showing correlation of strings
”MOD” and ”DET” with certain arrays

usage is shown in figure 13. In fact, the entire common header
structure has been implemented as described in the patent, with
the four bit high address signifying device group, and the low
address maintaining its role as differentiating single device
from device group polls, as well as providing the ones place
of the SLC address for a single device poll.

The single device polling structure has also seemingly been
kept with no major modification. Though the patent is vague
on the exact mechanism for devices to return information to
the control panel after the polling message, the FSM contains
five states after the parity bit which do not read from P1.0,
the SLC input pin. This, coupled with the gateway’s use of
a comparator to receive SLC signals, seems to suggest that
the actual implementation of FlashScan only allows for digital
encoding of information, dropping support for analog signals.

In contrast, the gateway seems to only support device group
polls without a member mask, though the structure, as in
figure 10, seems to again have been retained. The information
section comprises 10 states, with each being dedicated to one
member of the device group. Interestingly, the gateway seems
to permute the order of the members’ reply slots. Instead of a
standard 0-9 ordering, member 9 gets the first slot, followed
by 4, 3, 2, 6, 1, 9, 7, 5, and finally 0. The team does not
currently have a hypothesis as to why this would be.

As the gateway is intended to integrate into an existing
wired fire protection system, it will check the device(s)
addressed in a polling message by indexing into various
arrays stored in the SLC chip’s memory before responding.
This allows the gateway to only respond on behalf of the
wireless devices that are otherwise unable to communicate
with the FACP. However, it also indicates that, contrary to
previous assumptions, the gateway does not synchronously
relay messages between the wired SLC loop and devices in
the wireless mesh network. Instead, it responds on behalf of
wireless devices using information stored in its memory, which
is presumably updated by the RF processor using the USCI
channel between the two, which was previously identified by
the team [5].



Fig. 14. Saleae Logic Analyzer capture of TEST and RST pins of MSP-FET
during invocation of BSL.

Fig. 15. Layout of bytes for W-USB Over-the-Air protocol

IV. BSL SCRIPTER

A. BSL Invocation Sequence

Though the team was unable to interface with the RF chip
through BSL due to unknown errors, further analysis was
conducted to ensure proper function of the BSL setup. [5]
The first contact that the program makes with the chip is an
invocation sequence whose existence was known to the team
but not explored. It takes place on the TEST and RST pins
between the MSP Flash Emulation Tool (MSP-FET) and the
MSP430 microcontroller. [10] In order to activate BSL on the
MSP430, the TEST signal must have two rising edges and be
held high while the RST signal transitions from low to high.
Once the TEST pin is pulled down after this sequence, the
program counter of the chip jumps to the BSL flash memory
where instructions for execution lie. Based on readings from
the respective pins during BSL Scripter startup in 14, the
invocation sequence is working correctly, meaning the errors
for BSL originate from another source.

V. RF BACKDOOR ATTACK

A. Background

One possible avenue of attack is a backdoor into the
gateway. This would allow access to the gateway while cir-
cumventing authentication methods, and, depending on the
implementation, it could give the attacker a direct method
through which to manipulate the fire system. The team began
work on a backdoor attack against the RF chip to demonstrate
control over the system by executing an arbitrary function
triggered by a message to the gateway. Since previous research
has investigated the RF chip’s workings, the backdoor could
take advantage of this knowledge in its implementation. For
example, the team’s planned approach utilizes the firmware
upload script to add custom firmware containing the backdoor
to the RF chip [4]. Additionally, since the gateway frequently
communicates with the W-USB, analysis of the USB’s wireless
protocol in 15 provides a foundation to understand the gateway
message handling to be exploited in the backdoor [3].

B. RF Message Reception

The firmware of the RF chip must be configured to rec-
ognize a message that triggers the backdoor activation. As
a result, the team investigated the RF chip’s message recep-
tion mechanisms. The chip is connected to an SX1231 RF
transceiver via an SPI channel linked to the RF chip’s USCI
B0 port. The channel enables the RF chip to manipulate the
transceiver’s registers, which include a byte-wide buffer, flags
for the buffer state, and sync word configuration [11]. The
register is addressed using bits zero through six while bit 7
acts as a flag for a write command. If bit 7 is zero, a read of
the register indicated by the rest of the byte is immediately
transmitted to the gateway. If bit 7 is one, the next byte sent
by the gateway will be stored in the indicated register. For the
backdoor, an understanding of RF message reception would
allow the team to edit the range of messages that the gateway
can parse, making the references to the USCI B0 and the SPI
connection a point of interest in firmware analysis.

C. Firmware Analysis

The team reverse-engineered the logic in the RF
firmware that relates to message reception, but message
parsing remains undiscovered. The chip uses helper
functions read_from_transceiver_at_reg and
Writes_data_out_SPIB0_to_RF_Chip_at_Reg to
interact with the transceiver registers. An important register
for reception is 0x28, which holds flags indicating the status
of the payload buffer. Specifically, bit 6 is set when the buffer
is not empty, and bit 2 is set when the whole payload of a
message is ready to be read [11]. The RF chip frequently
reads from register 0x28 and checks bits to decide when it is
receiving a message from a device or the W-USB.

Through recognition of these patterns, the team has
determined the partial flow of receiving messages from
the transceiver and storing them in memory. First,
do_stuff_and_wait_payload_ready loops while
checking if a payload is ready, and once a payload can be
read, it calls put_fifo_at_461d_and_verify_crc
to store and verify the payload of the message. Stepping
into the function, the team found that a helper function
stores bytes read from the transceiver buffer at 0x461d in
memory with the length of the message stored at 0x471c.
The function moves on to verification of the message. It
extracts the CRC value in figure 15 and proceeds to calculate
the expected CRC of the payload. The SX1231 transceiver
performs data whitening by XORing data with 0xAA, so an
XOR is performed to undo the whitening before calculating
the expected CRC [11]. If CRC values match and the payload
is uncorrupted, put_fifo_at_461d_and_verify_crc
returns a 0, otherwise a non-zero value whose significance
has not been determined.

The original function do_stuff_and_wait_payload_ready
checks the return value after CRC verification, breaking from
the payload-waiting loop if it is valid. If not, the function
restarts the transceiver to improve its received signal strength
indicator (RSSI). Despite understanding the storage at 0x461d



and verification of a payload, the team has not determined
how the gateway parses the payload for message type and
commands.

VI. CONCLUSION

A. Next Steps

Continuing the team’s efforts in creating an RF backdoor
attack is an important goal for the future, and it will involve
further analysis of the RF firmware. With payload storage and
verification explored, the team will need to deduce what is
done with the data after the aforementioned steps. Although
efforts to reverse engineer them have not been successful,
functions that perform payload parsing are likely tightly cou-
pled with functions that have already been analyzed. Given
the team is able to fully reverse-engineer the parsing logic,
it will be possible to edit the firmware in preparation for the
backdoor, and the W-USB or a software-defined radio will be
able to trigger it.

A natural extension of the team’s analysis of the SLC
message structure is to reverse engineer the semantics of the
command and response fields. The team’s attempts to analyze
the functions in the SLC firmware responsible for interpreting
those fields were largely unsuccessful, due to the frequent
references to device information stored in the SLC chip’s
memory. The team is currently almost entirely unaware of
the layout and information contained within those sections
of memory, and so began turning its attention to the RF
firmware, from which those locations are set. The team had
previously decoded the wireless over-the-air protocol between
wireless devices and the gateway; however, the message format
between the two gateway processors is entirely different.
Therefore, the next step towards fully decoding the wired
SLC protocol would be to examine the RF firmware to
determine the interprocessor message structure, then identify
what information from those messages are stored and where,
then correlate that knowledge with how the command bits of
an SLC poll are interpreted, as well as how the response is
constructed.

A goal that the team will begin to prioritize is spoofing a
fire alarm on the wired SLC network. One of the approaches
the team will be taking to accomplish this goal is to create
a surrogate device that can send spoofed SLC messages. The
surrogate device would most likely be made using a Raspberry
Pi and the components that will connect the device to the
wired network, like the materials depicted in the figure 16.
Currently, the team has decided on using two 5V relay boards
to control the voltage supply. Also, the team decided on a
Raspberry Pi, rather than an Arduino, so that the breadboard
that is connected to the Pi will allow for more components
to be used in the surrogate device, and so components can
be removed and replaced easily. In order to achieve this goal,
the team concluded that a device needs to be taken out of the
SLC line, which is daisy chained through all of the devices,
and the surrogate device needs to be inserted in its place and
do what the replaced device did so that the SLC line does
not realize a device is missing. Along with replicating the

Fig. 16. This image depicts some potential components of the surrogate
device: a breadboard (top left, beige), a Raspberry Pi (top middle, green),
wires (middle, multi-colored), and a 5V relay board (bottom, blue and black).

replaced device’s functionality, the surrogate device will also
need to insert the spoofed message the team makes in order
to successfully spoof a fire alarm. Moving forward, the team
will be working on assembling the various components of the
surrogate device, making the spoofed message, and conducting
a logic capture of the wired SLC network in order to determine
which device the surrogate device will replace and when said
device is polled by the FACP.

REFERENCES

[1] Detectors. [Online]. Available: https://www.securityandfire.honeywell.
com/notifier/en-us/browseallcategories/wireless/swift/detectors

[2] Texas Instruments. SWIFT™ Smart Wireless Integrated Fire Technology
Manual. [Online]. Available: https://prod-edam.honeywell.com/content/
dam/honeywell-edam/hbt/en-us/documents/manuals-and-guides/
user-manuals/LS10036-000FL.pdf?download=false

[3] D. Lawrence, G. Kokinda, G. B. A. Lukman, Y. Kim, J. Smalligan, and
C. Roberts, “Swift wireless fire alarm pull station analysis,” Nov. 2021.

[4] D. Lawrence, G. Kokinda, G. Brown, D. Chou, Y. Kim, S. Wright, and
C. Roberts, “Swift wireless fire alarm system analysis,” May 2022.

[5] A. Bussey, D. Chou, J. Y. Kim, S. Suman, S. Wright, and D. Keskin,
“Swift wireless fire alarm system analysis,” Nov. 2022.

[6] D. Krantz, Make It Work - Addressable Signaling Line Circuits. Douglas
Krantz, 2021.

[7] Texas Instruments. Low-power quad differential comparators. [Online].
Available: https://www.ti.com/lit/ds/symlink/lp339.pdf



[8] ——. MSP430F543xA, MSP430F541xA Mixed-Signal Micro-
controllers. [Online]. Available: https://www.ti.com/lit/ds/symlink/
msp430f5419a.pdf?ts=1645687841030

[9] E. Bystrak and A. Berezowski, “Enhanced group addressing system,”
U.S. Patent 5 539 389, Jul. 23, 1996.

[10] Texas Instruments. MSP430™ Flash Devices Bootloader (BSL).
[Online]. Available: https://www.ti.com/lit/ug/slau319af/slau319af.pdf

[11] Semtech. Sx1231 datasheet. [Online]. Available: https:
//semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/44000000MDkO/
lWPNMeJClEs8Zvyu7AlDlKSyZqhYdVpQzFLVfUp.EXs


