
SWIFT Wireless Fire Alarm System Analysis
Deniz Keskin (Advisor)

Research Scientist I
Georgia Tech Research Institute
Atlanta, Georgia, United States

deniz.keskin@gtri.gatech.edu

Aniyah Bussey
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

abussey6@gatech.edu

Daniel Chou
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

dchou33@gatech.edu

Jun Yeop Kim
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

jkim3663@gatech.edu

Siddharth Suman
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

ssuman33@gatech.edu

Sidney Wright
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

swright@gatech.edu

Abstract—As wireless fire alarm systems gain popularity due
to increased convenience and more control over the various
components for building administrators compared to a traditional
wired system, they also introduce a new class of vulnerabilities
that no wired system has. This ongoing study investigates what
those vulnerabilities are, and how they might be exploited, for
example, to induce panic in or create a dangerous environment
for building occupants. This study specifically focuses on well-
known building systems manufacturer Honeywell’s Smart Wire-
less Integrated Fire Technology (SWIFT) solution, which includes
wireless versions of pull stations, smoke detectors, and other
common fire alarm system devices, along with a gateway which
interfaces these wireless devices with an existing wired system.

I. BACKGROUND

A. Fire Alarm Systems

Fire alarm systems are used to alert building occupants
and local fire authorities of the immediate danger of a fire.
The core of these systems are the detection nodes, which
can include heat, carbon monoxide, and smoke detectors,
notification nodes, such as lights and sounders, and the “brain”
of the fire alarm system, the fire alarm control panel (FACP)
[1].

Traditionally, fire alarm systems have been connected, and
thus communicate, via a physical wire. Many shortcomings are
associated with a purely wired detection system, including de-
tectors having reduced sensitivity over time and thus needing
replacement [2]. Wireless systems, which communicate over
radio frequency (RF) waves, allow for easier modification and
expansion of the protection system, as it is not necessary to
ensure all components are physically connected. While SWIFT
does offer wireless devices, it is not a fully standalone system;
it requires an existing wired system to hook up to. Thus,
a fire alarm system using SWIFT will have both a wired
subsystem and a wireless one, with the component known
as the wireless gateway acting as a bridge between the two.
The wireless subsystem includes the gateway, any wireless
devices, and SWIFT Tools, the management software for
the wireless network which communicates with the gateway
via a wireless USB dongle. The wireless devices and FACP

communicate with the gateway, which converts between wired
and wireless communication. However, the conveniences of a
wireless system come with the downside of exposing a larger
attack surface. Since communication with the system is no
longer restricted to a physical wire, attacks such as triggering
a false alarm are much easier to carry out. Additionally, attacks
such as holding a building’s fire alarm system for ransom
would simply not be possible in a fully wired system.

B. System Components

The FACP is used to control the functions of other systems
in the fire alarm system and receiving information from
detection and wired devices on the panel.

The wireless gateway is the main target for the team’s
project, as it controls the mesh network, which is composed of
wireless devices, by managing its formation and configuration
while also interfacing the wireless mesh network with the
wired network. The gateway has two processors that commu-
nicate with a Universal Asynchronous Receiver-Transmitter, or
UART channel, and this paper refers to them as the SLC and
the RF chips, which interface the wired devices and handle
wireless communication and the bootup process, respectively.
The UART is a protocol that handles asynchronous serial
communication between a computer and its attached serial
devices (SLC, RF, etc.). The gateway has three firmware
update files; they contain the bootloader firmware, the RF
firmware, and the SLC firmware. [2]

The RF chip, or Radio Frequency chip, is outlined in
Figure 1 with an orange square. RF module in general is
an electronic device for wireless communication with other
devices, and for the gateway, integrated UHF (ultra-high fre-
quency) transceiver is used for RF transmitting and receiving,
and RF chip for signal processing. RF firmware is contained
in the WSG_RF_3.0.bin file which is run during normal
operation of the RF chip. WSG_BU3_RF_3_0.bin runs on
the RF processor, which contains the bootloader firmware and
handles initial bootup and recovery modes. The RF processor
is responsible for managing the mesh network that contains



Fig. 1. The wireless gateway board, with various components outlined, such
as the RF (orange) and SLC (blue) processors, as well as the two JTAG
headers (red).

all of the wireless devices, interpreting wireless signals, and
updating itself and the SLC processor when firmware is
updated.

One of the primary components of the fire alarm system
that the team is analyzing is the Signaling Line Circuit chip,
or SLC chip, whose processor is depicted in 1 outlined with
a blue square. The primary purposes of SLC are to carry
signals and provide power for the addressable device modules
in the fire alarm system. It is an important component as it is
responsible for carrying the signals that report device status
and give instructions to the devices on the panel. For the
purposes of this project, the team is trying to reverse engineer
the gateway’s SLC firmware. This is important because it can
show the details about the specific instructions/commands the
SLC sends to the fire alarm system so that the team can
learn from it and eventually use that information to control
the system.

II. PREVIOUS RESEARCH

Initial work on reverse-engineering the system was mainly
done on the SWIFT tools management software and the over-
the-air (OTA) protocol used by wireless devices to com-
municate with the gateway [3]. Both protocols were fully
decoded due to major similarities, and the fact that SWIFT
tools is distributed as an unobfuscated .NET application, which
contains much more information than traditional executables,
making the reverse-engineering process easier.

To begin analysis on the wired side of the gateway, the team
used BinDiff, which analyzes two binaries and reports similar
code segments, to see if any work done on the firmware for the
RF chip or wireless pull station would be transferable [4]. The
team compared the SLC, RF, and wireless pull station binary
files. The RF and pull station binary files had a lot of overlap,
but the team didn’t find many similarities between the SLC
and RF firmware. Next, the team had to import symbol labels

into Ghidra in order to identify the memory-mapped peripheral
registers provided by the MSP430 processor, and lastly, set up
the memory map and entry point, which is known to be at
address 0x5c00 for any binary running on the MSP430F5437A
processor, in Ghidra. From observing its decompiled outputs,
it was found that the SLC firmware exposes its universal serial
communication interface (USCI) channel A1 via headers on
the gateway board; this channel is used for debugging output
from the SLC chip. The team also identified use of the serial
peripheral interface (SPI) protocol, though were not able to
identify what was being communicated with.

Another previous goal of the team was to bypass the SWIFT
wireless gateway’s firmware integrity check, since the gateway
is a primary target for attackers and it is important to determine
how to protect this single point of failure [4]. To do this, the
team used Ghidra to analyze the bootup (BU) firmware, which
is a small binary that contains logic for checking integrity
of the chip’s memory after a firmware upload by performing
a cyclic redundancy check (CRC) and comparing against a
checksum hard-coded into the new firmware. By utilizing the
debug features provided by TI’s Code Composer software,
the team was able to find the exact ranges of memory being
accessed, which allowed for a tool to be developed that could
calculate the CRC for an arbitrary firmware binary. This tool
is a python script that can replace the hard-coded CRC values
and replace them with the newly calculated CRC value, which
ensures that it will pass Honeywell’s firmware certification.

The team also developed a module, which is made up of
a CLI (command line interface) and a GUI (graphic user
interface), that streamlines the firmware upload process for
Honeywell’s SWIFT Gateway by re-implementing the full six
step protocol used by SWIFT Tools. The CLI is a Python script
that accepts up to three firmware binaries (SLC, BU, and RF),
patches the BU and RF firmware using the CRC tool, and
uploads the inputted firmware to the Wireless Gateway. The
GUI does this process graphically. Due to the development of
the the firmware update CRC verification bypass, a substantial
modification to the firmware can be created, which makes
uploading arbitrary firmware to the SWIFT Wireless gateway
possible.

III. SLC ANALYSIS

Previously, the team had attempted to reverse-engineer the
SLC processor firmware, in an attempt to understand the SLC
wire protocol and be able to send arbitrary, well-formed SLC
messages, possibly by modifying the gateway firmware and
uploading it using the custom firmware upload vulnerability
previously found by the team. This would allow for potential
attacks on the wired fire alarm network, something that might
be difficult to do with just the built-in functionality of the
gateway.

To focus and better direct the reverse-engineering effort, the
team had previously started continuity tests on the wireless
gateway’s circuit board, but these were constrained by time.
The team has now been able to perform more thorough testing
of the gateway circuitry, with the primary goal of determining



how the SLC processor can communicate on the SLC line,
given the voltage difference between the processor’s general-
purpose IO (GPIO) pins (3.3V) and the SLC line (15V) 1.

A. SLC USCI B1

However, one additional minor goal from the previous
testing was to determine the purpose of the SLC chip’s USCI
B1 port, which is referenced extensively in the SLC firmware.
Based on the team’s previous reverse-engineering work, this
serial channel is used to send and receive commands, which
appear to include synchronization, reboot of the SLC chip, and
adding and removing devices from the SLC loop [4]. The team
has now identified a connection between this port on the SLC
chip, and the USCI A1 port of the RF chip, which almost
certainly makes it the method for inter-processor communi-
cation, for functionality such as facilitating communication
between the (wired) FACP and the wireless devices in the
mesh network, and updating the SLC chip’s firmware (which
is initiated by the RF chip). This would provide an explanation
for why commands for device addition and removal exist,
which the team was previously less confident in attributing
as such.

B. Gateway SLC Message Sending Capability

Returning to the primary goal of determining the method
of communication between the SLC chip and SLC line, such
information would be useful in determining which parts of
the firmware binary deal with SLC communication, and thus
which parts to focus on to reverse engineer the SLC protocol.
The team has used the results of these continuity tests to
start to create a circuit diagram using the schematic software
DipTrace for the gateway board components connected to the
SLC line. Though not complete, the team has identified a likely
method for the gateway to short the SLC line, controlled by
the SLC chip’s port 1.5 pin (the sixth least significant bit of
GPIO port 1), as shown in figure 2. This connects to the gate
of an NPN Darlington transistor, whose collector is connected
to the shared SLC IN/OUT wire, and whose emitter is tied
to SLC ground. Thus, when this pin asserts a logic high,
current is allowed to flow from collector to emitter, shorting
the SLC line to ground, which will result in a logic zero on
the outgoing signal. Since SLC messages are defined in terms
of logic lows [5], as the line must normally provide power to
the devices connected to it, this constitutes the SLC message-
sending capability for the gateway.

While the team has not had time to begin fully investigating
how port 1.5 is used and referenced within the SLC firmware,
it is very plausible that this is the method used by the gateway
to send SLC messages, for two main reasons. The first is
that port 1.5 is explicitly configured during the SLC chip’s
“initialization” functions as output. The second is the use of a
Darlington transistor, as opposed to a normal bipolar junction
transistor (BJT). The construction of a Darlington transistor

1Previously, the team had assumed that the SLC line carried a 24V signal;
testing using a multimeter showed this to not be the case. Instead, the line
appears to be at a lower voltage of 15V.

Fig. 2. Schematic diagram showing connections of gateway component Q3,
a Darlington transistor, which likely provides a method for the gateway to
send messages on the SLC.

makes its logical behavior comparable to a normal BJT, except
that because of the configuration of its two constituent BJTs,
a Darlington transistor has a much higher current gain, which
means it is able to switch much higher currents than a single
BJT using the same base current [6]. This is important because
the base is driven by a GPIO pin, which is limited to a couple
milliamps, while the amount of current resulting from shorting
the 15V input to ground will obviously be orders of magnitude
higher.

C. JTAG Labeling

In addition to continuity tests on the gateway board com-
ponents, the team also started continuity tests to determine
the functions of the two JTAG headers present on the board.
Previously, the team had identified several pins on the lower
header exposing the RF processor’s JTAG debugging pins,
which would be used in conjunction with TI’s MSP-FET (flash
emulation tool) and Code Composer Studio. Additionally, pins
1 and 3 on the upper header had been identified as being
connected to the USCI A1 pins of the SLC processor, which
were used for that chip’s debugging output [4]. The team
identified all necessary pins for debugging the SLC processor
using the same setup as the RF chip, as shown in figure 3, and
successfully connected the FET debugger to the SLC chip.

D. SLC Chip Memory Pull Analysis

With this, the memory contents of the SLC chip were
dumped and disassembled in Ghidra. The team was able to
confirm that, for the most part, the firmware on the SLC
chip was identical to the firmware distributed by Honeywell,
and using Ghidra’s version tracking tool, analysis done on the
firmware version was easily transferred over to the memory
pull. However, similar to the RF chip, the SLC firmware has
an additional section of code at address 0xD600 that is not
present within the distributed firmware. From writes to the



Fig. 3. Labelled diagram of both JTAG headers present on the gateway board.
Pins with no label are not known to connect to any other component.

Fig. 4. Analog capture from Saleae’s Logic Pro 16 of the SLC line. Three
distinct voltage levels are visible: 10V, 5V, and 0V.

USCI A1 debugging output and structural similarities to the
RF boot firmware, it is very likely that this section handles
firmware verification. Unfortunately, due to the gateway not
being in a normal functioning state, the team has not yet been
able to fully take advantage of the dynamic reverse engineering
capabilities provided by the debugger to make further progress
in decoding the SLC protocol.

E. KeySight Logic Analyzer

Previously, the team had used a Saleae Logic Pro 16 logic
analyzer to record and analyze SLC signals. However, because
this device only has an input voltage range of ±10V, the full
range of the SLC signal is not visible, and the team was
unsure as to whether the halfway voltage drops seen in figure
4 actually occur, or if they are simply artifacts of exceeding
the input voltage range. In an attempt to resolve this, the
team investigated using a KeySight 16860 Series portable logic
analyzer, which has a much higher input voltage range, to
record the signals on the SLC. However, unlike the Saleae,
the team found that the KeySight is not capable of giving
analog readings, and the voltage threshold used for its digital
waveforms only goes up to 5V. Therefore, this device will
unfortunately not be helpful in resolving the halfway voltage
drop question.

IV. RF BINARY REVERSE ENGINEERING

A. RF USCI Reverse Engineering

A sub-goal of the software team was to understand SLC
USCI functionality through reverse engineering. This was
accomplished through analysis of a function namely called
”frequency hopper”. 5 The function is responsible for chang-
ing the operating frequency of the receiver-transmitter. It is still

Fig. 5. Frequency hopping function with designations of each line’s purpose

uncertain whether the frequency is responsible for triggering
certain mechanisms or commands in the gateway itself, but
if it is, there is a possibility for malicious actors to recreate
signals at the operating frequency and spoof an outcome.

The operating frequencies are between 902.875 and
927.125 MHz. The if and else parameters are responsi-
ble for determining the frequency. The parameter with the
lowest hexadecimal is likely the lowest switchable fre-
quency, while the highest is likely the highest frequency.
There remaining else statement likely operates between
902.875 and 927.125 MHz. Additionally, it is clear that the
USCI synchronous control 0 UCB0CTL0 is also changing
based on the initial hexadecimal parameter. The synchronous
control variable is responsible for setting the sync mode. The
0x03 parameter is likely turning it on while the 0x02 and 0x01
turn sync mode off.

V. DEBUGGING THE GATEWAY

A. Connecting the MSP-FET

While connecting the flash emulation tool to the SLC chip,
the gateway was placed in an unidentified error state of solid
yellow and red indicator lights due to a misalignment of
the JTAG expansion board (see 6). In this state, there is no
connection to the W-USB in SWIFT Tools, which impedes
proper operation and analysis of the device. Despite efforts
to reconfigure the setup, the state persisted, and the gateway
could not boot.

To test the function of the MSP-FET and observe the bootup
procedure, it was connected to the RF chip where it had
previously been used to dump firmware binaries for reverse
engineering following the connections in 7. Debugging with
Code Composer Studio (CCS), TI’s development environment
for its microcontrollers and processors, would enable the team
to set breakpoints for further understanding of the boot process



Fig. 6. The gateway board while in the unidentified error state. The indicator
lights can be seen in the bottom left.

Fig. 7. Wiring diagram for attaching the MSP-FET debugger to the gateway’s
JTAG header.

that caused the error state. The CCS project’s build process
failed due to the lack of a function to debug, so the team
created a placeholder “main” function to run 6. Although the
debug session caused the indicator lights to turn off, it also
overwrote a section of memory at 0x10000 with the main
function that was required by the CCS project. The memory
segment was written to Bank B of code memory on the
MSP430 chip [7], meaning it overwrote an unknown function
in the chip’s firmware.

B. Flashing Firmware

With the firmware on the RF chip corrupted, a reset was
necessary to restore its function. The Honeywell-provided
firmware update service packs contain original firmware
known to work with the gateway; as a result, the team decided
a factory firmware binary could be loaded onto the chip using
CCS alongside the MSP-FET to achieve a reset on the system.

Preliminary attempts to write to memory on the RF chip
included flashing the entire file WSG_BU3_RF_3_0.bin

Fig. 8. The C placeholder function flashed onto the RF chip, and its
overwritten memory.

from location 0x0 to 0x45BFF. The team was unsuccessful
because BSL memory is a protected section that requires
write permissions gained from a user-defined password [7].
Since BSL memory was not affected by the overwrite, it
was not necessary to include it in the next attempt. As such,
the correction began at RAM, a non-flash writable section
of memory beginning at 0x1C00, until the end of the file at
0x45BFF. A Python script was created to assist in parsing the
firmware binary into sections, outputting a new file to load
onto the chip. An issue that arose while writing the script
was the format of the output file, which did not contain the
same raw hexadecimal data as the original file. However, the
necessary formatting is achieved by the use of the read and
write bytes mode of opening files in Python. The final script
opens a firmware file, reads the bytes, and discards data before
0x1C00, storing everything after in parsed_memory.bin
for loading from a file in CCS.

Combining the memory parsing script with the gateway
bootup firmware, the team was able to obtain a writable
section of memory from the provided file. During the process,
CCS had problems writing to memory despite a valid section
being chosen. The solution seemed to be power cycling
the gateway by replacing the PCB and restarting CCS in
order to write successfully, but this method does not work
effectively every time. Even though WSG_BU3_RF_3_0.bin
was written, the gateway did not connect to SWIFT Tools.
When examining the code in the chip, there were large sections
filled with 0xF values that were not meaningful. The same
process of loading memory was utilized with firmware from
WSG_RF_3_0.bin. Once a write succeeded, the gateway
was power cycled, and it displayed alternating red and green
blink indicators. These indicate that the gateway is in boot-
loader normal mode and is ready to update [2].

C. COFF files

Common Object File Format, COFF, is a file format that
is used to store compiled code such as file outputs from a
linker or a compiler. [8] In other words, COFF files are files
that are created from assembler and link step objects. As the
memory parsing script was not able to write to memory despite
that a valid, designated memory section was chosen, another
approach attempted was using the COFF files to write to mem-
ory. The reason for this new approach was the possibility that
processors could have protections against flashing raw binary



Fig. 9. Designation of bytes for file header defined by TI literature including
a target ID for specification of the target processor. [8]

Fig. 10. Bytes from firmware3.0.out with the COFF file header outlined
in black and the beginning of raw data in red. Decoded text is displayed to
the right.

files, while COFF files are able to bypass said protections.
Initially, a command line tool to convert binaries into COFF
was used to generate a writable file [9]. When attempting to
flash the generated file, the team encountered an error in which
Code Composer did not recognize the target device of the file.

After further investigation of object file dumps from the
chip, it was found that TI has specific metadata for COFF
files that can be written to their chips. The metadata consists
of a 22-byte file header, one or more 48-byte section headers,
raw data, data relocation information, a symbol table, and a
string table. 9 The team utilized a file that flashed correctly as a
template for the metadata, finding that it contained two section
headers beginning with label strings which decoded to “data”
at 0x16 and 0x46. 10 Outlined in black is a file header that
the team examined and recreated within the generated COFF
file. Bytes 20 and 21 of the file header at 0x17 and 0x16,
respectively, describe the target of the file by a magic number.
For the MSP430, these bytes need to be set to 0x00A0 to pass
the target check and be written to the chip’s memory.

The attempt to flash a COFF with file header bytes has re-
sulted in only a small section of BSL memory and blocks being
changed due to the file not mapping to memory correctly. This
incorrect mapping happened because it contained metadata
that was appended by the team and generated metadata from
the command line tool even though they conflicted each other

with duplicate headers. The file was edited to contain the
appended file header immediately followed by the generated
section header, and the correct mapping was produced. As with
binary files, COFF files could not be written to protected BSL
memory, leading to the write failing.

Later, the team flashed the COFF with a header to start at
address 0x1800, which is writing to unprotected information
memory instead of BSL, suspecting that the gateway was
working incorrectly because neither section corresponded to
the accurate firmware in binary. Writing to information mem-
ory also failed because Code Composer could not write to
flash memory locations. Because writing to flash memory did
not work, the team decided to set up a BSL scripter that could
write to the corrupted BSL and information memory.

D. BSL Scripter Setup

BSL Scripter refers to a program developed by TI to
interface with the bootloader or bootstrap loader (BSL) of their
suite of microcontrollers [10]. The scripter is built with various
commands that can be written in a text file, passed to the
program in command line, and run on the chip. Since the BSL
and information sections of memory contained differences
with the normal mode firmware, the team took interest in the
RX_DATA_BLOCK command, which would allow for write
access to those flash memory sections of the MSP430. It is
important to note that due to BSL Scripter not being provided
as an executable but instead as a C++ project, the program
needed to be built in Visual Studio (VS). The setup of BSL
Scripter consisted of building dependencies, configuring the
project, and building the executable.

There were three main project dependencies: Boost libraries
for C++, HIDAPI, and libusb. The Boost libraries were con-
figured to be recognized in the TI-provided VS project by
adding their path to the project’s additional include libraries
for the linker and the project in general. Boost also depends
on the Microsoft C++ compiler cl.exe, and the installation
is contained within the Visual Studio directory because it
is included with its C/C++ build tools. After adding cl to
environment variables, Boost setup scripts were run to add
filesystem, system, and program options libraries. Boost builds
different types of library files depending on the target, and
BSL Scripter requires statically linked libraries, meaning the
parameter runtime_link must be static during Boost build.
Although HIDAPI and libusb files need to be built according
to the guide, the team found that the necessary header files
were already included in the BSL download from TI.

While configuring the project, the team was delayed due
to versioning issues related to Visual Studio and its build
tools. The BSL Scripter getting started guide recommends
the 2013 package that includes Visual Studio and the v120
toolset, but VS 2022 was used with an attempted install of
v120 alongside it. Backward compatibility appeared to be
supported; however, VS continued to use the latest v143
instead. Automatic migration to a newer version was available,
but the team was unsure of the effects that it would have on
the software. As a result, everything was reconfigured with



LOG
MODE 5xx UART COM6
TX_BSL_VERSION
TX_DATA_BLOCK 0x5C00 0x2F output.txt

Fig. 11. The script that tested the BSL Scripter setup

VS 2013 Express. Building the executable was as simple as
building the VS project itself after setting up the dependencies.
Once complete, the BSL Scripter program appears within the
project folder, making it straightforward to open the location
in the command line to test.

Before running a script, the hardware needed to be con-
nected. The MSP-FET debugger has a BSL interfacing mode
that it can switch to after a power cycle, which is what
the team used. In addition to the RST and TEST JTAG
pins and ground, the debugger requires the voltage supply
of the device connected to VCC Tool and UART transmit
and receive pins located at 1.1 and 1.2, respectively, for the
MSP430F5347A. 3 Unfortunately, the transmit and receive
pins are not exposed on the gateway JTAG header, leading
the team to use micro grabber test leads to connect to the
chip directly. In the connection process, the team encountered
further obstacles because the micro grabbers shorted each
other due to the chip being so small. Instead of soldering the
board, the team conducted continuity tests while maintaining
the leads in various positions to determine the best placement
even though they were precariously close to touching.

E. Running a Script

On the software side, TI provides test scripts that can blink
LEDs connected to the chip, but the team created a small script
to send to the MSP430 that would read the BSL firmware
version and the block of code beginning at 0x5C00. The
script was written to comply with the standards defined in
TI’s manual.

The first line is the initial setup of the script to log the
output in a text file while the second defines the target family
of the chip, the serial communication protocol, and the port.
The COM port is not that of the MSP-FET itself, but a UART
backchannel exposed by the tool for BSL interface purposes.
Running the script yielded an Unknown ACK value error after
every command except for LOG, and none of the data was
transmitted. Since the MODE command failed, it is likely that
the debugger was not able to establish communication with
the chip. This could be due to the chip not entering BSL
mode through a sequence on the RST and TEST pins or a
problem with the connection of the transmit and receive pins.
The team was not able to resolve the issue and working with
BSL Scripter to fix the gateway is a goal of future work.

VI. CONCLUSION

Overall, the team has made good progress in identifying
how the gateway interfaces with the SLC line, and has
learned more about various aspects of the MSP430 processor
architecture in trying to debug and fix the gateway.

A. Next Steps

The team has two distinct, major goals for future work.
The first is to continue working to diagnose the current (non-
functioning) state of the gateway and get it into a normal,
functioning state. This will be immensely helpful in dynami-
cally reverse-engineering the gateway functions and hardware,
and the team has a promising lead in the form of the BSL
Scripter. The second is, after identifying a method for SLC
message sending, the team would like to know how messages
are received by the SLC chip. This will help immensely
in understanding the SLC protocol by reverse-engineering
the SLC chip’s firmware, and ultimately being able to send
arbitrary, well-formed commands.

REFERENCES

[1] Daniel Crimmens. What is a fire alarm system? [Online]. Available:
https://realpars.com/fire-alarm-system/

[2] Texas Instruments. SWIFT™ Smart Wireless Integrated Fire Technology
Manual. [Online]. Available: https://prod-edam.honeywell.com/content/
dam/honeywell-edam/hbt/en-us/documents/manuals-and-guides/
user-manuals/LS10036-000FL.pdf?download=false

[3] D. Lawrence, G. Kokinda, G. B. A. Lukman, Y. Kim, J. Smalligan, and
C. Roberts, “Swift wireless fire alarm pull station analysis,” Nov. 2021.

[4] D. Lawrence, G. Kokinda, G. Brown, D. Chou, Y. Kim, S. Wright, and
C. Roberts, “Swift wireless fire alarm system analysis,” May 2022.

[5] Douglas Krantz, “Make it work - addressable signaling line circuits,”
2021.

[6] Darlington transistor. [Online]. Available: https://en.wikipedia.org/wiki/
Darlington transistor

[7] Texas Instruments. MSP430F543xA, MSP430F541xA Mixed-Signal
Microcontrollers. [Online]. Available: https://www.ti.com/lit/ds/symlink/
msp430f5419a.pdf?ts=1645687841030

[8] ——. Common Object File Format. [Online]. Available: https:
//www.ti.com/lit/an/spraao8/spraao8.pdf

[9] Pete Batard. (2011, Nov.) bin2coff. [Online]. Available: https:
//pete.akeo.ie/2011/11/bin2coff.html

[10] Texas Instruments. Bootloader (BSL) Scripter. [Online]. Available:
https://www.ti.com/lit/ug/slau655g/slau655g.pdf


