
CSAW ESC 2022: mAIday’s Final Report
Sydney Bice

Vertically Integrated Projects
Georgia Institute of Technology

Atlanta, United States
sbice7@gatech.edu

Zelda Lipschutz
Vertically Integrated Projects

Georgia Institute of Technology
Atlanta, United States
hlipschutz3@gatech.edu

Katherine Paton-Smith
Vertically Integrated Projects

Georgia Institute of Technology
Atlanta, United States

kpatonsmith@gatech.edu

Ammar Ratnani
Vertically Integrated Projects

Georgia Institute of Technology
Atlanta, United States
aratnani7@gatech.edu

Samuel Litchfield
CIPHER Laboratory

Georgia Tech Research Institute
Atlanta, United States
slitchfield3@gatech.edu

Abstract—The authors participated in CSAW ESC 2022, con-
ducting attacks to compromise the machine learning models
presented in the challenges. This paper serves to debrief those
challenges, covering the team’s analyses of the problems and their
attempts to solve them.

Index Terms—machine learning, neural networks, MLaaS

I. INTRODUCTION

Artificial Intelligence (AI) is ubiquitous in industry, partly
because of the resurgence of Machine Learning (ML) ap-
proaches. In fact, cloud service providers have noticed this
trend and begun providing ML as a Service (MLaaS) solutions.
However, the ubiquity of ML raises questions as to its security.
To wit, the authors of this paper participated in CSAW
ESC 2022, a competition to compromise the confidentiality,
integrity, and availability of ML systems. As participants, the
authors were expected to find, develop, and implement exploits
against black- and white-box models. This paper explains how
the team approached the challenges, including their initial
analysis and attempted solutions.

II. SETUP

Many of the challenges required interacting with an MLaaS
endpoint, which could only be done via a library running on
the Raspberry Pi Virtual Machine (VM) provided by CSAW.
However, the team mostly used the VM just for data collection
and for submission of their final results. Most development
took place in a custom Docker image. Unfortunately, one
of the participants owns an M1 laptop so she could neither
run the VM or Docker image while another participant was
able to connect to the server but was not able to run the
Docker image. The tensorflow/tensorflow image was
taken as a starting point, from which the team installed
the Python packages they needed. The Dockerfile and
docker-compose.yml scripts are available in the root
directory of the TAR file.

III. TROJAN 1

For 7r0j4n_1, the team was given white-box access to
a Convolutional Neural Network (CNN) running classification
on the CIFAR10 dataset. Their aim, very loosely, was to find
a the smallest set of weights to set to 0.0 in order to most
effectively decrease the accuracy of the model.

More specifically, there is a tradeoff between the attack’s
effectiveness — how much it caused model’s accuracy to
decrease, and its detectability — how many weights were set
to 0.0. This tradeoff was codified in the formulas given by
CSAW for the challenge, and the team’s aim was to optimize
their score as given by those formulas.

A. Approach

Ultimately, this challenge revolved around determining the
most “salient” weights of the network. The more “important” a
weight is, the team reasoned, the greater the impact of zeroing
it out. Thus, their approach was to first quantify this notion
of importance, then prioritize eliminating the weights with the
highest saliency, using trial and error to determine how many
weights in what layers to zero out in order to maximize their
score.

The team experimented with several saliency metrics. The
first one they tried was simply the weight’s absolute value.
Intuitively, signals that are important to the final classification
should be amplified, and thus should traverse heavily weighted
edges. By setting those edges’ weights to zero, important
information is kept from downstream layers, ideally causing
misclassification. Unfortunately, this theory does not work well
in practice. When properly implemented, this approach only
scores between 130 and 140 by the challenge’s metrics. In fact,
this heuristic fared much better (scoring 158) when improperly
implemented to ignore positive weights.

The authors attempted to bolster their absolute value heuris-
tic by only selecting one weight from each convolution.
That is, they forbade duplicates of input_neurons and
output_neurons pairs. Their hypothesis was that this

would be preferable to accidentally zeroing out the entire 3×3
convolution. It showed no improvement, though.

In search of better metrics, the team considered research
in pruning neural networks. Pruning aims to reduce the re-
sources required to run a model by “systematically removing
parameters.” Often, this is done by “scoring” parameters for
their importance, then pruning the least important ones. [1]
In some sense, the task of pruning a neural network can be
seen as dual to this challenge. The former seeks to maximize
detectability while minimizing effectiveness, while the latter
aims to do the opposite in both.

In [2], the seminal paper in neural network pruning, Le Cun
et al. develop the following saliency metric. Recall that the aim
of training is to minimize some loss function L with respect to
the model’s weights w when evaluated on some training data.
Clearly, it is necessary that ∇w L = 0 at any local optimum,
meaning gradient information is unhelpful in defining saliency.
Instead, [2] considers H the matrix of second derivatives of L
with respect to each weight. Notice that H is positive semi-
definite at a local optimum. To avoid the quadratic O(|w|2)
complexity of storing and operating on this Hessian matrix
directly, Le Cun et al. assume H is diagonal; “cross terms
are neglected.” The (non-negative) saliency of the weight wi

is taken to be the i-th entry of the Hessian Hi,i.
Fortunately, [2] gives an efficient algorithm, similar to back-

propagation, to compute the diagonal entries of H . Unfor-
tunately, TensorFlow does not provide the low-level control
needed to implement it. The team tried to extract the Hessian’s
diagonal entries through some Hessian-vector product that
TensorFlow can compute, but they were ultimately unable to.

B. Solution

The authors’ most effective strategy relied on the observa-
tion that the model’s accuracy was likely being evaluated on
the CIFAR10 test data T . Even if it wasn’t, the test set is still
representative of the data the model would be fed, and it can
thus provide insight into which weights are salient.

To wit, the team computes

∇w L(w, T), (1)

where L is the categorical crossentropy loss function. Notice
that Expression 1 is not identically 0 since the loss is evaluated
on the test set T , not the training set D. They then estimate
how the loss would change if the weights were zeroed out by
multiplying component-wise

S = −w · ∇w L(w, T),

approximating L as a linear function. The saliency of a weight
wi is finally taken to be Si how much it increases the loss by
this estimate. Notice that no absolute value is taken; a weight
whose elimination improves the model will not be zeroed out.

Using this heuristic, the authors achieved a score of 172.
They did this by zeroing out the most salient 1% of weights
in Layer 3 and the top 0.5% of weights in Layer 7. In all,
only 0.06% of the network was affected to cause its accuracy
to drop to (slightly better than) random chance.

A CSV file listing the eliminated weights is given in the
TAR file at 7r0j4n_1/out.csv.

C. Efficiency and Improvements

As described above, this attack requires trial and error to
determine how many weights in which layers to eliminate.
Only once those hyperparameters are fixed does our saliency
metric prescribe which weights to select. However, the authors
believe that this hyperparameter tuning can be automated.
They noticed that a nearly optimal score can be obtained
by focusing on only one layer ℓ. With it fixed, one can
binary search to maximize score with respect to how many
weights are eliminated from ℓ. This approximate solution can
be obtained in O(L · log |w|) time, where L = 6 is the number
of layers considered and |w| ≈ 222.13 is the number of weights
in the network. From this approximate solution, one could then
apply a hill climbing method to optimize further. This process
closely mirrors what the team did manually.

One potential improvement is changing the loss function L
used when computing saliency. The authors chose categorical
crossentropy because it is the most common one for training
on categorical data. However, the exploit might perform better
if L more closely reflected the target metric: accuracy.

A more pressing issue is that the attack requires some test
data to evaluate the loss function on. The test set T cannot
simply be the training set D since ∇w L(w,D) = 0. Clearly,
the attack works best if T is exactly the data E the model is
being evaluated on. The authors do not know if it sufficient
to have T and E sampled from the same distribution, nor do
they know how much their score would drop if T and E had
no overlap.

IV. TROJAN 2

The setup for 7r0j4n_2 was exactly the same as that of
7r0j4n_1, with the challenges differing only in their goal.
This problem asked the team to decrease the model’s accuracy
on a specific class, while leaving other classes unaffected. As
with 7r0j4n_1, there is a tradeoff between the attack’s effec-
tiveness, stealthiness — how little other classes are affected,
and detectability. This tradeoff was codified by the scoring
formulas given by CSAW, and the team aimed to maximize
their score with respect to them.

The authors did not solve this challenge. As a baseline, they
submit their CSV from 7r0j4n_1, available in the TAR file
as 7r0j4n_2/base.csv. It gets a score of 288.

A. Approach

Nonetheless, the authors have given thought toward solving
it. They propose the following method, a modified version of
their exploit from 7r0j4n_1. First compute the saliency of
each weight with respect to each class. Specifically, if T is
the test data, let T (c) be the subset of T labeled as class c.
Compute the saliency of weight wi with respect to c as

s
(c)
i = wi ·

(
∂

∂wi
L(w, T (c))

)
,

and for convenience define its saliency vector as

si =
(
s
(0)
i s

(1)
i · · · s

(9)
i

)⊺
.

In this framework, the aim of this challenge is to select
weights which are (without loss of generality) salient with
respect to class c = 0 but which are not for c = 1, · · · , 9.
In other words, the importance of a weight is how “close” its
saliency vector is to

λ · e0 =
(
λ 0 · · · 0

)⊺
,

where λ is any constant and e0 is the basis vector for the c = 0
“axis”. We can quantify this closeness using the dot product:
define the importance of wi to be

Si =
si · e0
∥si∥

= ŝi · e0.

With the (scalar) saliency of each weight defined, one can pro-
ceed with the attack in exactly the same way as 7r0j4n_1.

B. Limitations

Most of the concerns from 7r0j4n_1 apply here too.
Additionally, a potential drawback of using a normalized dot
product is that it discards information about the scale of si. To
minimize the detectability of the edges selected, it might be
best to deprioritize weights that aren’t important to any class
(i.e. with ∥si∥ small). That way, the weights that are eliminated
directly contribute to the attack’s effectiveness. The proposed
method above has no provisions for this.

V. ALPACAS EVERYWHERE

For the alpaca5_everywhere challenge, the team was
given an alpaca classifier, which determined if an image was
an alpaca (true or false). Five sample images were provided,
three of which were images of alpacas and two of which
were similar animals. In the metadata of each image were
gps coordinates. A neural network can be used to conclude
which quadrant of the world the input images are coming from.
Using this, the team was tasked with finding the locations for
the farms that the images were taken at.

The authors did not solve this challenge, and they submitted
no deliverables for it.

A. Observations

Since this challenge required the team to be able to access
the metadata of each image, we began by looking into the
best methods to achieve this. Since some of the team did not
have experience in extracting metadata using Python, this was
an important first task. The authors used [3] to get a basic
of understanding of how to extract and utilize metadata from
images. This post explains how the Pillow Library can be used.
Researching how to extract the images metadata also allowed
the team to have a better understanding of what the challenge
was and begin formulating ideas of how it could be solved.

With this metadata, the team found the gps coordinates and
were then able to conclude which quadrant of the world the

input image was coming from. We continued this process
for a few more sample images to try and figure out the
accuracy of the coordinates compared to the output of the
model. Unfortunately, we were unable to use this information
to solve the challenge.

VI. CODEWORDS

For the c0dewords challenge, the authors were allowed
to query an MLaaS endpoint that classifies handwritten digits.
Additionally, the model classifies for some unknown symbol
which, when submitted, reveals some secret information. The
aim is to find some input that the model erroneously classifies
as the unknown symbol or to somehow extract the symbol
from query results. The ideal exploit would extract all the
weights of the server’s model.

The authors did not solve this challenge, and they submit
no deliverables for it.

A. Observations

The activations for each digit appear to be piecewise linear
functions of the input pixels. Specifically, passing the model’s
confidence scores through a logit function reveals that the
resulting data points (locally) lie on a line — r2 ≈ 1. It stands
to reason that the confidence scores are scaled and shifted
sigmoids, which is approximately how a final softmax layer
would behave as the input varies linearly.

Based on this observation, the team hypothesizes that the
model is a neural network using ReLU for its activation
function, with the outputs passed through softmax to convert
activations to probabilities. Sadly, this doesn’t provide much
insight into the model’s behavior. Even a ReLU network
with only one hidden layer is sufficient to approximate any
continuous function. The authors know of work in extracting
the weights of such networks [4] [5], but they were unable to
apply them. One obstacle, for instance, was that they could
not figure out how many neurons the hidden layer has.

A more pressing obstacle is that the output doesn’t seem
continuous. Specifically, neurons appear to have a discontinu-
ous increase in activation as they begin to fire. This observation
sows doubt about whether the model is really a neural network.
Notice that, if their activation functions are continuous, they
can only model continuous functions. It is possible that the
network is using TensorFlow’s threshold parameter in its
ReLU activation. Regardless, the team could not figure out the
structure of the MLaaS provider’s model.

B. Attempts

With little extra information to go on, the team tried
“fuzzing” the MLaaS provider, sending the endpoint random
inputs and observing its outputs. Specifically, they set each
pixel uniformly at random to either on (255) or off (0).
Surprisingly, the model behaved the same on all the randomly
generated images, returning the same probability vector each
time. This experiment suggests that the function learned by the
model has a very small support, which would make it difficult
to find an input that it misclassifies. At the same time, the

Fig. 1. Visualization of the “far-field” behavior of the MLaaS provider’s
model for the c0dewords challenge. Each pixel is colored based on
classification resulting from setting it to a large number (1e10) and setting
all the other pixels to black (0). Black pixels represent those which remain
unclassified in the far-field.

result might simply be an artifact of the sample space. The
authors may have received different results had they biased
their sampling toward turning pixels off, or if they had sampled
real numbers in [0, 255] instead of just the interval’s endpoints.

A more fruitful experiment the team ran was submitting
“one-hot” inputs — inputs with one pixel on and all the others
off. The authors believed that observing the resulting classifi-
cations would allow them to deduce which pixels determined
which digits, and thus deduce the weights of the network.
They even took it to the extreme, setting pixels brighter than
on by making their activation a very large number like 1e10.
The result of that is displayed in Figure 1. The team also
tried “one-cold” inputs, with one pixel off and all the others
on, as well as taking that to the extreme. This entire class
of experiments sometimes produced shapes, as in the black
pixels of Figure 1, and the authors tried guessing that one
of those was the unknown shape they were supposed to find.
Ultimately though, they found nothing.

VII. DUMPSTER DIVE

For the dumps7er_d1VE challenge, the team was tasked
with replicating a recycling sorter as close as possible. This
was measured by taking the L2 norm of the output classifi-
cation scores compared to the original model. A variety of
private evaluation sets were used to determine what the score
of our replicated recycling sorter would be, which were not
released by CSAW.

The authors did not solve this challenge, nor did they have
the time to try to. They submit no deliverable for it.

VIII. LEAKY BOTTLE

The team was given query access to a classification model
which can determine if a bottle is a wine, water, beer, soda,
or plastic bottle. The team was also given a set of proprietary
images from a client. The task was to determine which of the
client’s images were used to train the classification model.

A. Approach

This challenge is a membership inference attack. It relies on
the fact that a model will often classify its supervised training
data differently than data it has not seen yet. Particularly, an
over-fitted model would have high confidence in classifying
its training data.

In [6], the authors used training shadow models to imitate
the target model. Each shadow model is trained on a different
set of data, partitioning the target data between the models. It
is known which data was in the training sets. The outputs of
the shadow models are then used as the inputs of an attack
model, with the labels of whether the original data was in
or out of the training set. The attack model is then trained
to detect if data was in or out of the training set given its
confidence vectors. The team considered this approach, but
given the large amount of time needed to train many shadow
models, looked for another approach.

In [7], the authors propose an Unsupervised Membership
Inference Attack (UMIA), which can obtain high accuracy
without the use of shadow models. UMIA first obtains the clas-
sification confidence vectors, reduces noise via temperature
scaling, then uses binary classification via k-means clustering
to determine which data was in the training set. The mAIday
team followed this method in their attack.

B. Solution and Observations

The team obtained confidence vectors for each proprietary
image sample by querying the model. The confidence values
were sorted by size and the top 2 to 3 values selected. Then
temperature scaling was applied according to [7]. The team
varied the value of temperature T used. Finally, k-means
clustering was performed.

At first, by taking the top 2 confidence values and using
a low T value, the clustering algorithm could distinguish
between the images with very low confidence values, but was
not selective enough to indicate which images may have been
in the training set. Using a higher temperature gave better
results, and could identify which images may have been in
the training set. Using a larger k value for kmeans clustering
also helped narrow down the results, and a value of k = 4 was
used. However the algorithm still returned a large amount of
images, around 20. The team decided to then use the images
with the highest max confidence value.

The team’s final list of images is given in the TAR file at
leaky_b0ttle/out.txt.

IX. POISON MUSHROOM

As hidden in the name, the challenge is focused on data
poisoning attacks. We were given a model that analyzes
poisonous and non-poisonous mushrooms to output specific
features of a poisonous mushrooms. The task was to send a
custom file with mushrooms to the server in order to change
the relevant selected features for poisonous mushrooms.

A. Background

In general, LASSO attempts to find a linear regression on a
data set with an L1-norm for regularization. LASSO can also
be used for feature detection (which weights are “important”)
by finding which weights have non-zero weights in the linear
regression. BOLASSO runs LASSO many times and selects
the features that LASSO picks most often.

In [8], the authors suggest using sub-gradient decent to find
the best points for data poisoning by using the below formula:

argmax
xc

1

n

n∑
i=1

ℓ(yi, f(xi)) + λΩ(w),

where xc is the attack point being optimized for, n is the sam-
ple size, y is the classification, and Ω(w) is the regularization
term with w as the weight vector. However, due to limited
time, the team could not follow this approach.

B. Team’s Approach

The team thought they could force the model to focus on
a random feature by sending many poisonous mushrooms
with that feature selected and many non-poisonous mushrooms
without that feature. This was not initially effective because
the team at first sent mushrooms with the chosen highlighted
feature and random values for all other values. However, after
looking at sample, the team noted that each class of feature
should only have one feature turned on.

After submitting sample.csv, the server output the “correct”
set of features. The team decided to target each of them. By
trial and error, the team found that around 50 mushrooms did
not affect the detectability of the data poisoning attack.

Additionally, each feature was tested one-at-a-time to see
if turning it on or off for poisonous mushrooms affected the
score. After this was done, the team targeted new random
features. The final score ended up being 14 for malicious
attack and detectability ranged from 95-100.

The final CSV file used by the team is given in the TAR
file at poison_mushroom/out.csv.

X. CONCLUSION

In this paper, the team recounts their attempts to solve the
problems presented to them as part of CSAW ESC 2022.
They ultimately failed most of the challenges, only able to
detail their analysis of the problem and their attempts at
solving it, along with potential avenues for future work. For
the challenges they did solve, the team describes their solution,
including their process in creating it and its efficiency.

REFERENCES

[1] D. W. Blalock, J. J. G. Ortiz, J. Frankle, and J. V. Guttag, “What is
the state of neural network pruning?” CoRR, vol. abs/2003.03033, 2020.
[Online]. Available: https://arxiv.org/abs/2003.03033

[2] Y. LeCun, J. Denker, and S. Solla, “Optimal brain
damage,” in Advances in Neural Information Processing
Systems, D. Touretzky, Ed., vol. 2. Morgan-Kaufmann,
1989. [Online]. Available: https://proceedings.neurips.cc/paper/1989/
file/6c9882bbac1c7093bd25041881277658-Paper.pdf

[3] A. Rockikz, 2022.

[4] S. Milli, L. Schmidt, A. D. Dragan, and M. Hardt, “Model reconstruction
from model explanations,” in Proceedings of the Conference on Fairness,
Accountability, and Transparency, ser. FAT* ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 1–9. [Online]. Available:
https://doi.org/10.1145/3287560.3287562

[5] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in Proceedings of the
25th USENIX Conference on Security Symposium, ser. SEC’16. USA:
USENIX Association, 2016, p. 601–618.

[6] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership infer-
ence attacks against machine learning models,” in 2017 IEEE Symposium
on Security and Privacy (SP), 2017, pp. 3–18.

[7] Y. Peng, “Unsupervised membership inference attacks against machine
learning models,” in NeurIPS 2021 Workshop Privacy in Machine
Learning, 2021. [Online]. Available: https://openreview.net/pdf?id=
lvjmpl00jqF

[8] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli, “Is
feature selection secure against training data poisoning?” 2018. [Online].
Available: https://arxiv.org/abs/1804.07933

