CSAW ESC 2022 Paper:
Team Ramblin® Wrecks

Final Submission Paper

Antonia Nunley, Sheel Shah, Chris Reid, Kayla Kirnon
Ramblin’ Wrecks
Embedded System Cyber Security VIP
Georgia Institute of Technology
Atlanta, GA

Abstract—The paper discusses important research, solution,
and technical issues that have occurred leading up to the
competition. The paper first goes over the technical issues that
the team endured, how we overcame some of those issues, and
how it effected out process on the challenges. After talking
about the setup process, the paper moves into the first challenge-
7R0J4N_1. For this challenge, the paper discuss the research that
was conducted in order for us to began completing the task. Then
it moves into the scope of the challenge and the attack method we
used to solve it. Once all of that us discussed, second challenge
we discuses is CODEWORDS. This section talks about the goal of
this challenge, the script that was created, and testing process.
The next two challenges we discuss was poison_mushroom and
aplaca5_everywhere, respectively. Both of them follow similar
format, as the paper discuss the challenge, potential solution,
and the research that was conducted. leak_bOttle and Dumps7er
D1VE are both similar challenges in the sense that they are both
dealing with images, where as one goes into digital watermarking
and the other determining which images were used their network
with a proprietary set of images.

I. INTRODUCTION

This year’s CSAW 2022 challenge relies on Machine learn-
ing cloud services using a remote Raspberry Pi. Millions of
people use machine learning data sets like GCP, AWS, and
Azure which is why we need to ensure training models are
protected from various exploits as discussed in the paper. We
will be using a remote Raspberry Pi hosted on a cloud service
to investigate our attack on machine learning models. Over the
course of a couple of weeks, seven challenges were released
over a month-long period to be solved for teams to earn points
for the finals of the competition, to be held in New York City.
This paper will go over the in-depth processes that were taken
to solve each challenge leading up to the competition.

II. VIRTUAL MACHINE (VM) SETUP AND TECHNICAL
DIFFICULTIES

Throughout this competition, there were many difficulties.
Described here is a breakdown of the different scenarios we
encountered.

A. VM Download and Architecture Compatibility

The first problem, and most blocking was getting the pro-
vided virtual machine downloaded onto each team member’s

computer. Local machine architecture was different between
some members (x86 vs ARM), so those with M1 macs
(ARMG64) were not able to download the VM.

This virtual machine cannot be
powered on because it requires

the X86 machine architecture,
which is incompatible with this
Arm machine architecture host.

See KB-84273.

(0]¢

Even with use of Rosetta 2 [6] the actual VM still required
that it was run on an x86 architecture. Despite a specific
version meant to be ran on ARM computers. This caused
one of our members to be unable to install the VM and
thus they could not run any of the challenges. Therefore, that
member was only able to hypotheses solutions to the different
challenges and run it when working with the member that was
able to run the challenges.

B. Internet Connection Issues

The VM was supposed to come with internet however, no
one in our group could get the VM to connect to the internet.
So, we decided the best course of action would be to set up a
shared folder between the VM and our host machine. In order
to set this up, we installed an extension VMWare tools [7].
By doing this, we were able to move the cloned repo from
the host, onto the vm without internet. VMWare tools places
the shared folder in a directory that is difficult to find, so we
then had to move the shared folder onto the desktop of the
vm. Through communication with the csaw officials we were
told that the repo needed to be on the desktop. It did occur

to us that running the given files, for example entrypoint.py,
would more than likely not work since there was no Internet
connection.

After communicating with officials, we were also told that
the vm works with NAT connection between the host and the
vm. However, for all members on mac computers, we found
that Bridged connection worked and gave the VM internet
connection. At this point we were finally able to clone the
repo. This was a necessary step since as new challenges
came out, it would be easiest to be able to clone the repo
to get the most updated materials. Internet connection also
helped us address any changes we saw that happened. For
example, while 7r0j4n_1 was the only released challenge, a
small change was made to the entrypoint.py file, and pulling
that change was made easier with internet connection.

III. 7ROJ4N_1

Our plan was to stay up-to-date with the challenges as
they rolled out. In order to do this we wanted to jump in
on challenge one as early as possible. We first started by
completing the set up detailed in the previous section and then
began by running the entrypoint.py file with the given example
csv file. Our first goal was to understand the output given to
us by the file. Initially we tried to understand the summary
table given and what exactly was happening when the 32
rounds were executed. From our understanding, we received
an output from the server and an accuracy per round. We
assumed that the first round accuracy was the max accuracy
of the system and as the retraining happened it was relearning
with the inputted trojans.

Our initial thought was to attempt to zero out just the first
three inputs to layer O and see if that changed the output at
all. To begin this, we did some research on what exactly a
Trojan attack entailed on a convolutional neural network. This
required information of what a convolutional neural network
(CNN) was. The relevant information gained follows.

A. Convolutional Neural Networks and Trojan Attacks

The concept of using Trojans as a infiltration method is
old; however, due to the effectiveness and adaptability of this
technique, it has evolved into being used against machine
learning models. These techniques employee various code or
data that look legitimate to easily blend in with the application
[1]. It is generally designed to manipulate specific components
or entirety take over an application [1]. This is how Trojan
works for most cases, but in terms of ML environment it is
most optimal and applicable when it remains hidden and is
intended to discover the data - such as the training set, model
parameters, etc - that is running the model. This discovery can
lead the attacker to cause a data leakage of the model. The
main goal of these attackers is to use these data leakage to
tamper with the parameters and inject some kind of trigger
that, when read by the deep learning algorithm, activates
unwanted behavior [2].

There are many various strategies to Trojan development;
however, many of them follow a variation of a classic guide-

line. The guideline is this - a trigger is generated, a training
data set is reverse-engineered, and the model is retrained [3].
A trigger is inserted into a machine learning model to execute
a condition to occur. For example, in a model that trains by
going through images and analysing it to be used later for
identifying other images, a small patch could be inserted in
a training set that would be called a trigger. When the model
runs across that set a condition is executed based on the
attackers intention behind the trigger. Figure 1 shows a detailed
step through of what a attacker would do to incorporate a
trigger into a training set, while still retaining the original
attributes.

Trojan trigger generation

fe5 fe5

- Trojan trigger
Select O () softmax generation
Neuron N algorithm !
o 2 =
A I
() 8 | Generated
| trojan trigger
Initialize |
Mask
Training data generation
softmax Training data
Initialize generation
(B) \ A A) algorithm

Model Retraining

— -
r/ Denonse function n
Generated
training data
T

Orlgmal

(C) Model .. Label A Trojaned ...

Model

Label B

Retraining

Figure taken from Liu et al.s Trojaning Attack on Neural Networks

Fig. 1. The implementation of Trojan in a model [3]

B. 7r0j4n_1 Scope Verification

We were able to learn a lot on a Towards Data Science
website on how to exactly go about the Trojan attack [5]. As
we did more research and attempted more input combinations
we found it very difficult to do any other method than brute
force. After multiple inputs with multiple rounds we could
only move the accuracy down about 2% to 3% while also not
modifying our attack effectiveness at all.

It was at this point we reached out to our faculty advisor
to ask for advice. We then had to contact csaw to see if there
were any hints or advice they could provide as well. Even
though we were on the technical track we were told that we
are allowed to look at the directions given to the research
track. This was something that we did not think was allowed
so we never went down this route initially. This caused us a
lot of lost time in the beginning because we believed that we
had to take the attack from a blackbox perspective.

Once we confirmed that we were allowed to use the research
tracks materials we download the train.py file provided and
model weights. This allowed us to get a open view of exactly
what the model was doing and how it was being trained.
Unfortunately it was at this point that we ran into even more
technical difficulties.

C. 7r0j4n_I1 VM Technical Issues

The first problem was that we were unable to run any of
the scripts provided with the directions given in the README
document. For example the document mentioned that we
should use pip however larq could only be installed with
pip3. Running pip3 install tensorflow also did not work. This
debugging took days. We were convinced that something was
wrong with our images so we re-download the VM and
executed all of the above debugging steps again and we’re
still unable to download tensor flow onto the machine. So, we
had to move to running train.py locally.

Our first thought was to run it on our host machines
however, this too came with a lot of dependencies that would
take up more space on our computers than we were willing
to give. Also, the debugging and set up of tensor flow on a
computer began to take more time to complete than it did to
set up the VM. The next course of action that we took was
to attempt to run tensor flow and train.py with Docker. The
first step was to use a generic Docker file that had tensor flow
capabilities in which we would run a notebook online [9].
While this worked the first time, it did take a lot of power and
a lot of time to train the model and training accuracy was very
low (20%). Finally, the next step we took was to run train.py
in the doctor container without using the notebook.

This worked, but we realized that training the model would
take somewhere between 3 to 5 hours. After training once,
which takes almost 20 minutes, train.py then trains 10 more
times to increase accuracy. We went back to the README
to understand if there was a way that we could do this faster.
Since the model weights were provided, we researched ways to
use these weights to train the model instantaneously. We finally
found a way to load the models in and run train.py quickly.
It was at this point that we could actually begin attempting to
solve the challenge.

D. 7r0j4n_1 Attack Method

Two checkpoint references resolved to different objects (<tensorflow.python.keras.
56b2b0>) .

[<tf.Variable '0/kernel:@' shape=(3, 3, 3, 128) dtype=float32, numpy=
array([[[[-2.37293556e-01, 4.36645687e-01, -3.27498108e-01

5.38550973e.
8.21658492e-01

3.76850158e-01, e
6.98807538e-0211,

1.02295983e+00,

[-4.29749846e-01,
-3.00493240¢-01,

[[-4.52496171e-01,
-2.47688428e-01,
[-2.06009078e+00
3.78368229e-0
[-7.24443674e-0
-4.10864294e-01,

2.34832406e-01, -2.57270485e-01,
3.53683203e-011,

9.48811471e-01, 6.07184544e-0211,
[[-1.22729152e-01,
-3.10262442e-01,
[-8.13384891e-01
5.94884753e-0

4.97066021e-01, -5.46119153e-01
5.30639663e-

4.97018009e-01

3120614666601, el
6.39664829e-01111,

1.92070711e+00,

[-4.45719659e-01,
—-2.14617848e-01,

[[[-6.56669736e-01
-1.08447082e-0

-1.09795712e-01,
5.91503642e-021,
01661795e-01 7050958e-
-1.94171281e-03, -7.92650133e:
-2.79021829e-01, 6.73670828e: oap
5.73016226e-01, 6.33561671e-01]],

4.23866153e-0
[-1.22498679e+0
-9.45446014e-01,

[[-5.97032070e-01, -9.38830316e-01,
-6.30355597e-01, -2.56299019e-01,
[-1.46678841e+00, -2.04810977e+00,

6.98983371e-02,
2.56163150e-01
4.49455887e-01,

Fig. 2. Layer O shape and weights output

After we loaded the weights it was time to begin experi-
menting with tensor flow. The first thing we did was attempt to

see the individual weights per layer. While researching through
the tensorflow documentation, we saw function definitions
such as layer.get_weights() and layer.weights. Our first goal
was deciphering the difference between the two. We saw
that layer.weights outputs information on the shape, size, and
weights shown in figure 2.

Layer.get_weights() provides almost the same information
but with the weights in a numpy array. From this we were
able to access index zero of the returned numpy array to get
an actual numpy array of the weights. From this, our next
step was to understand how the array was structured including
dimensions so that we could access individual weights of
individual nodes.

The shape of the array is given with .weights, and for layer
zero, the shape was (3, 3, 3, 128). Therefore each attribute was
accessible by some version of weights[a,b,c,d]. The definitions
of each are as follows:

1) a: x position of the weight

2) b: y position of the weight

3) c: the n th input to the corresponding conv layer (coming

from the previous layer)

4) d: k th filter or kernel in the corresponding layer

(8]
From this information we were able to access specific
weights. For example, to access input x = 1, y = 1

between node O on layer curr to node 1 on layer I:
curr.get_weightsO[O][1][1][0][1]. This gives the weight be-
tween those nodes. Once we figured out how to access indi-
vidual weights, we moved to getting all weights, and placing
them in a list. The end goal was to sort them.

The purpose of this was based on our understanding of
weights of a trained model. A model that is trained multiple
times will have weights that eventually become larger in
magnitude for defining coordinates in the shape. Since the
larger magnitude weights are the most significant, we assumed
that zeroing out the most significant weights would reduce the
accuracy the greatest.

We used python to create a script that would take the top
n weights from each of the Conv2D layers and create a csv
file in which they were "zeroed out". We define zeroed out
as setting conv_x and conv_y both to O for the input node on
that level. We first ran entrypoint.py with the top 3 weights per
level, but this did not change the accuracy. So, we attempted
the top 75 weights per level. While this reduced the accuracy,
it also increased the detectability score. We decided that there
must be a different way to do this.

We looked back to the information we found on losses
and gradients. And noticed that this would be the best course
of action to getting relevant weights that were also large in
magnitude. Unfortunately even after a lot of work, we could
not find a simple way to get the losses ingredients of each level
and so this is where our attempts ended with this challenge.

IV. CODEWORDS

Codewords was the next challenge we decided to attempt.
The goal was to decrypt a message and retrain the neural

networks to convert the secret message. It’s involved doing
research on MLaaS (Machine Learning as a Service). The first
thought was to understand what MNIST was, and how to wrik
with a 28x28 image. We were given a sample input CSV. We
began by running that first. Entrypoint.py returned 10 numbers,
in a Mabs sort of style with keys zero through nine, and values
zero or one. From the sample file, all values were zero except
for the one associated with key equal to four. Unfortunately,
while testing we didn’t understand exactly what this output
map meant, so we decided to try to make a Python script to
show us the image that the CSV was holding.

A. Visualizing MNIST Images

In order to create our python script, we used numpy
and matplotlib, two python libraries which allow a user to
manipulate data and display it with graph and other plotting
algorithms [4]. With these libraries we were able to create
a file called seeimage.py, which displayed the MNIST image
onto the screen. It was then confirmed that the image provided
was a 4, and thus explained the single 1 in characterization.

With the goal being decrypting the secret message, we
assumed that a specific number would actually provide the
secret message. Our goal then changed to finding more MNIST
images to test our hypothesis that the number which has 1 as
the value after running entrypoint.py is its classification from
the model.

B. Testing different MNIST Images

The search for other MNIST images was difficult. It seemed
as though everywhere we looked we would have to purchase
the data set used. However, luckily with our institution emails
we were able to locate 10,000 inputs from the MNIST data set.
It was at this point that we could begin testing different inputs
to test our hypothesis. We started by testing zero through nine.
During testing, at some points images would be miss-classified
but in general, they were correct. We realized most of the miss-
classified images were not strong candidates for classification
anyway. This was verified by using our seeimage.py file, to
check for strong candidates for classification.

Well testing inputs, we were able to get nine of the 10
digits correctly classified almost every single time. However,
we were never able to get an eight to correctly classify.
This, we decided was the goal for finding the secret message.
Unfortunately, we ran out of time and we’re unable to find the
correct input value to get the secret message but, we do think
that this is the first step in finding the correct output.

If we had more time on this project we would attempt even
more of the inputs from the MNIST data set that were labeled
as eights. From there we can assume that we would get the
secret message. And we would have to retrain the model after
that.

V. POISON_MUSHROOM

The goal of this challenge was to inject malicious data into
the training set, such that the model would not be able to use
the data features to identify piousness mushrooms. The model

has identifies 112 features which can assist in identifying
piousness mushrooms, however they need figure out which
features are actually relevant in completing this task. To do
this, the model will run through a crowdsourched data from
local truffle hunters. To decrease the accuracy of this model,
the attack needs to highlight enough non-relevant features that
the accuracy decreases but does not arise suspicions. If non
of the relevant features are produced, then this could lead to
suspicions quickly as there is some tampering with the model
has occurred. Since most of the team members are not able
to run these challenges on their computers, we were not able
to get this far into testing our solutions for the challenges.
However, if we were to go about solving these challenges,
this is how we would have attempted it. A sample CSV file
was given with a proper format of how our generated CSV
should be. It needs to be formatted the same, otherwise the
server will realize that this is some sort of attack due to error
checking implementation.

Since a sample CSV is given, we know exactly how our
malicious generated CSV must be formatted. The headers are
given which have all of the features that were helpful for
identifying piousness mushrooms and then at the bottom of
the CVS which as a line of numbers which correlate to the
112 features provided. The relevant features have the number 1
while the non-relevant have 0. The idea is that we must provide
a CSV file almost the same as the sample one, however, by
changing more 0s’ to 1 thus reducing the accuracy. This must
occur until the detectable of the attack is at a good level. This
can be done by keeping the total weights the same. if two extra
1s” were added then the relevant features 1 can be changed to
Os to balance the total weight. Since we did not have enough
time and most of our team members computers did not work
with these VMs and challenges, we were only able to so many
challenges using one computer.

A. poison_mushroom Potential Methods

Through our research, we found that using poison attacks
would be the most effect strategy as changing as little as few
inputs can reduce the accuracy as much as 4 times but have
little effect on the detect ability. We came to the conclusion
that Data modification works best in situations where the
attacker has a gray-box view of the system- which is this
case. Where This means they are not aware of the training
algorithm being used for the model, but have access to the data.
In this case, the attacker can modify the training data through
adding, removing and changing. Manipulating the labels for
the training pool is a good strategy if the goal is availability
compromise. It is required then that the attacker modifies a
larger portion of the training data [4]. This increases the odds
of detection. Another strategy of data modification is through
manipulating the input data itself. This supports the definition
of a poison attack because the goal is to shift the boundary
in some way. It is also possible to manipulate the input and
change cluster distance [5]. Since the input data of the 112
features is given, we can use this strategy to alter the input
data to highlight non-relevant features. So, in theory, changing

the labels and the headers associated with the weights of 1 or
0 can be shifted or duplicates can be added to confuse the
system. With this technique, we would be able to effectively
attack the system without being detected.

VI. APLACAS_EVERYWHERE

The goal of this challenge is to discover the locations of
5 farms that have contributed pictures of their alpaca. The
GARI is accepting images from across the world, however,
using these pictures received from the farms, they are using it
as training set to stop people from poisoning their data with
random pictures. Therefore, they scan the 5 aplaca pics with
any pics sent to them to verify that the image is legitimate. Just
like the poison mushroom challenge, our team did not have
enough time or technology at hand to attempt to solve this
challenge. However, we had conducted some research on how
the team could solve this challenge. Since the model scans the
aplaca from the ones in the farm to the one submitted by a
person, we thought that if a Trojan trigger was injected into
the image somewhere not in the aplaca it should pass through.
The rest of the image does not have to be similar to that of the
sample pictures, but just the aplaca. Therefore, as mentioned
in the Trojan research above, if we follow the similar steps
the image should be able to pass the check and allow us to
infiltrate the system. When the model go over the Trojan data,
we can cause a data leakage to occur of the training set and
release the coordinates for the farm. This could occur in many
ways, as when the trigger is hit, the model could be diverted
to a script that causes the coordinates to release.

A. aplaca5_everywhere Potential Method

After research the best attack that was similar to the attack
mentioned above was Neural Backdoor attack. This attack
gives access to the model data by using the neural weights
to cause a trigger to initiate a certain action. Regardless of it
being a data based attack, it focus on disrupting the neural
network through modifying the training data to gain access
to the model. By embedding malicious information into the
dataset, it can create a condition which causes a trigger [1].
The model behaves normally until it comes across the specific
circumstance. This trigger can be hidden in forms of a small
pixel pattern, hitting a certain section of the dataset, etc. as
shown in Figure 3. There are several benefits to this approach
for a attacker - it reduces the accuracy of the model, as the
training set provides the model for future predictions. It is not
required to have access to layers and parameters of the original
neural network.

VII. DuMPS7ER_DIVE

This challenge is designed around a training model to prove
that models have been stolen from RecycleMe’s cyber defense
team. We will be sending JPG images to the RecycleMe server
that performs MLaaS classification. We have been given the
dataset to use while working on the challenge. There are two
things to note; we have a python script entrypoint.py which
shows how we will be communicating with the server, and the

Trigger: 0 Trigger: 1000

v
[m— —

Output_0: Cat

v

| —

Output: Dog Output_1000: Bird

(a)Normal inputs (b)Input with Triggers

Normal input vs. an input with triggers, as seen in this diagram

Fig. 3. Difference between normal input vs input with trigger [2]

JPG will be scaled to a 300x300 color image and sent in raw
binary format.

A. Watermaking Scheme

We know the RecycleMe cyber defense team uses a wa-
termaking scheme to show models have been stolen. A wa-
termanking scheme is a type of data hiding technology used
mostly in multimedia (i.e. Netflix). All though watermaking
is used in different ways like audio and video, we will be
using it as an image sent to the server. There are three ways
watermarking is made. The fist is generating the watermark
you want which can depends on may factors including keys.
Once we have generated the picture we can now the watermark
is then embedded into the cover object by the watermark
embedding followed by detection which goes through a veri-
fication process.

VIII. LEAKY_BOTTLE

Leaky Bottle revolves around a company that provides
MLaaS for users to upload images for immediate classification.
The company claims that a set of their training images was
leaked by ShadyCorp. As members of the technical track, we
need to prove that ShadyCorp was the culprit and that they
trained the network with these images. A hint given by the
competition mentions that we could have some luck looking
at ShadyCorp’s latest MLaaS model. Our goal is to find out
what images were used to train the model. We are given a
subset of images and out of them, we want to find at least 10
that were used to train the model.

A. Potential Attack Methods

To begin Leaky Bottle, we would first start by downloading
the trained model weights and train.py files that were provided
to the research track. This would allow us to run the model
locally and test its responses with different images in the data
set. Looking at the training data we see that each of the files
has at least one photo shopped bottle in the image. Initial
thoughts after looking through the first 20 images, we see
different angles of bottles, and sometimes bottles stacked on
one another. We believe images with bottles stacked on top of

each other may not have been used to train the model, since
it is very difficult for the computer to tell the difference in
dimensions. Since the photos are photo-shopped, there arent
any shadows behind the bottles so this is even harder to detect.

Our initial attack method would more than likely be to run
the entrypoint.py file and see what output we receive. From
the source code of entrypoint.py, it appears that the script will
request a file name from the user. One of the files from the
data set should be given and the assumed output is some value
that confirms or denies whether the image was used to train
the network. Another possibility for the output would be that
it simply verifies if there is a bottle in the screen.

Given the output, we would attempt to find trends in what
images of the data set are correctly classified. In order to be
sure, we would need to run multiple trials to ensure that an
image is classified correctly almost every time. Of all of the
challenges, this seems the easiest to brute force.

IX. CONCLUSION

Due to our long lasting technical problems, our team was
only able to use one computer to test and solve the challenges
provided to us. Furthermore, it took us extensive amount of
time to solve our issues because we had no idea what was
causing them and some were due to the errors in from the
CSAW competition. Despite these shortcoming, the team was
still able to solve two of the challenges and figure out potential
solutions to the remaining ones. The teams goal was always
to do the best we could based on our skills, knowledge, and
tools provided to us. Through the various research completed
by the team, we have learned the different kind of attacks
that can occur to Machine Learning Models. We have now
learned how to create the attacks mentioned in the articles we
researched and potentially break any models through multitude
of attacking style.

REFERENCES

[1] J. Mueller, “Common cyber attacks on machine learning ap-
plications,” Linode Guides & Tutorials, 20-May-2022. [Online].
Available: https://www.linode.com/docs/guides/machine-learning-cyber-
attacks/. [Accessed: 19-Sep-2022].

[2] B. Dickson, “Trojannet — a simple yet effective attack on machine learn-
ing models,” The Daily Swig | Cybersecurity news and views, 15-Jul-
2020. [Online]. Available: https://portswigger.net/daily-swig/trojannet-a-
simple-yet-effective-attack-on-machine-learning-models. [Accessed: 20-
Sep-2022].

[3] S. Hough, “Neural trojan attacks and how you can help,” Medium, 01-
Aug-2022. [Online]. Available: https://towardsdatascience.com/neural-
trojan-attacks-and-how-you-can-help-df56c8a3fcdc. [Accessed: 20-Sep-
2022].

[4] “Visualization with python,” Matplotlib.
https://matplotlib.org/. [Accessed: 03-Nov-2022].

[5] S. Hough, “Neural trojan attacks and how you can help,” Towards Data
Science. [Online]. Available: https://towardsdatascience.com/neural-
trojan-attacks-and-how-you-can-help-df56c8a3fcdc. [Accessed: 04-Nov-
2022].

[6] Brithny, “An overall view of Rosetta 2 Mac [free download],” EaseUS,
26-Oct-2022. [Online]. Available: https://www.easeus.com/knowledge-
center/rosetta-mac.html. [Accessed: 03-Nov-2022].

[71 VMWare, “Download vmware tools - vmware cus-
tomer connect,” VMWare, 2022. [Online]. Available:
https://customerconnect.vmware.com/en/downloads/info/slug/
datacenter_cloud_infrastructure/vmware_tools/12_x%?23drivers_tools.
[Accessed: 04-Nov-2022].

[Online]. Available:

[8] Vladimir TsyshnatiyVladimir Tsyshnatiy 94911 gold badge99 silver
badges2020 bronze badges, JohnJohn 63366 silver badges1010
bronze badges, and Cagri KaplanCagri Kaplan 2933 bronze
badges, “How to correctly get layer weights from conv2d
in Keras?,” Stack Overflow, 01-Jul-2017. [Online]. Available:
https://stackoverflow.com/questions/43305891/how-to-correctly-get-
layer-weights-from-conv2d-in-keras. [Accessed: 03-Nov-2022].

[9]1 S. Malik, “Easiest way to setup a tensorflow Python3 envi-
ronment with Docker,” Winsmarts, 15-Jul-2018. [Online]. Avail-
able: https://winsmarts.com/easiest-way-to-setup-a-tensorflow-python3-
environment-with-docker-5fc3ec0f6df1. [Accessed: 04-Nov-2022].

[10] B. Biggio et al, “Poisoning Behavioral Malware Clustering,”
Nov. 2018. Accessed: Sep. 18, 2022. [Online]. Available:
https://arxiv.org/pdf/1811.09985.pdf

[11] J. Mueller, “Common cyber attacks on machine learning ap-
plications,” Linode Guides & Tutorials, 20-May-2022. [Online].
Available: https://www.linode.com/docs/guides/machine-learning-cyber-
attacks/. [Accessed: 19-Sep-2022].

