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Abstract— This paper details the current progress in research
into the Wyze Camera by the Embedded Systems Cyber
Security VIP team of the Georgia Institute of Technology. This
document goes over known and discovered information about
the camera, including its capabilities, found vulnerabilities, and
aspects of its firmware. The goal of the research is to discover
the Over the Air protocol used by the Wyze camera, so that
RF Fuzzing can be achieved.

I. INTRODUCTION

The Wyze Camera V2 is an Internet of Things (IoT)
Device. It allows for wireless connection to multiple devices
in a location in order to provide surveillance of the locations
in which the camera(s), motion sensor(s) and contact sen-
sor(s) are placed. Contact sensors provide enhanced security
in giving the user access to physical interruptions in the
environment of the camera. These are most commonly used
on windows and doors. Motion sensors not only allow for a
fast and reliable way to notify users of disturbances in the
area they have placed their system, but also give an extra
layer of security allowing users to place them outside of the
views of the camera to serve as a precursor that something
may come into view soon. This expands the space that can be
monitored with this system. The surveillance of the locations
and status of their devices are provided for users through the
"Wyze - Make your Home Smarter" mobile application.

Recently, there has been a increase in the use of wireless
cameras, cloud access, and mobile applications [1]. This has
resulted in a need for the security of these devices to be
enhanced. As the number of devices using wireless and cloud
based technology increases, the risk of it being attacked
by individuals with malicious intent has too [2]. Enhancing
security on IoT devices is very expensive for companies that
produce them, and some decide to continue producing the
original product without making the necessary changes to
the devices’ security [3].

An example would be the CloudPets toys released by
the company Spiral Toys, which acted as IoT devices by
allowing parents to communicate with their children through
the toys via the internet. In late 2016 to early 2017, it was
found that the CloudPets toys had some massive security
vulnerabilities, which lead to the data of over 800,000 users
being leaked. However, even when the company was notified
and took notice of the vulnerabilities, hardly anything was
actually done to fix these vulnerabilities. Information about
the companies stocks at the time implies that they may not
have had enough money to do much about the security issues.

Therefore, they made the simplest of patches and continued
to sell the toys as if nothing was wrong [4].

Another example involving the Wyze camera this team
is working on occurred in 2019. Wyze confirmed that from
December 4th to December 26th of 2019, a large amount
of personal data was leaked for more than 2.4 million users
[5]. These examples should abundantly show that enhanced
security on IoT devices is increasingly necessary.

The purpose of this research team is to achieve RF fuzzing
for the Wyze camera. Fuzzing is a technique to automatically
input structured malformed data into a computer program-
ming. Monitoring the output of the program while doing this
helps find crashes, memory leaks, and other issues, which
would present a way to more easily discover security flaws
in the Wyze camera. To achieve RF Fuzzing, the main goal
of the team is to decode the Over the Air (OTA) protocol
of the Wyze camera. Sections II and III will detail known
information about the Wyze camera, then following sections
will document the progress the team has made regarding the
OTA protocol.

II. FUNCTIONAL DESCRIPTIONS
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Fig. 1.

Overview of System Communications

The Wyze IP Camera V2 setup, as shown in Figure 1,
consists of mainly four parts: the motion and contacts sen-
sors, the sensor bridge, the camera and the Wyze application.
The sensors communicate with the sensor bridge through
radio frequency comunication (RF). The sensor bridge sends
that data to the camera via a USB connection. The camera
communicates through Wi-Fi with the Wyze cloud servers,
which sends data to the Wyze application. The sensor bridge
can communicate with up to 100 sensors [6]. We have JTAG



access to the sensor bridge and sensors which allows for
dynamic analysis as well as the ability to grab snapshots of
memory.

A. Mainboard

The main Wyze Camera has 3 printed circuit boards (PCB)
sandwiched together. The main PCB with the SoC (System
on a Chip) (Figure 2), the microSD board (Figure 3), and
a sensor board (Figure 4) are all contained inside the main
camera system.

Fig. 2. PCB of the Main Board
Label Color Red Green Light Blue Dark Blue
Component T20 SoC | Flash Mem | Serial Port | WiFi Board
TABLE I

COMPONENTS FOR MAIN BOARD PCB

The PCB shown in Figure 2 is one of the circuit boards
inside the Wyze camera. The board runs on a T20 processor
[7] that uses the MIPS (Million Instructions per Second) ISA
(Instruction Set Architecture). This is the main board and
it also contains flash memory, Wi-Fi, and serial access as
shown in the figure. The open serial access provides a root
shell to interact with the provided Linux OS.

Fig. 3. microSD PCB for the Main Board with motor driver in red

Figure 3 shows the PCB that has a motor driver to move
the camera as well as an SD card slot. There is another PCB
shown in figure 4 that is a part of the main camera system.

Fig. 4. sensor board with no lens

B. Sensor Bridge

The sensor bridge connects the camera’s sensors (motion
and contact sensor) to the main camera. The sensor runs
on the CC1310 micro controller, which deals with the
transmitting and receiving of RF packets and converting
packets into data. There is also an antenna for this wireless
communication.

Fig. 5. Front of Sensor Bridge PCB with CC1310 highlighted in Orange

The sensor bridge connects to the main camera via USB-
A, which is controlled with a WCH CHS554T chip on the
back of the board [8].
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Fig. 6. Back of Sensor Bridge PCB with WCH CHS554T chip highlighted
in green

C. Motion Sensor and Contact Sensor

The contact and motion sensors communicate with the
sensor bridge wirelessly. Both sensors are controlled by a
CC1310 micro controller.
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Fig. 7. Contact Sensor PCB

Label Color Red Brown Green
Component Antenna | CC1310 | Magnetic Switch
TABLE II

COMPONENTS FOR THE CONTACT SENSOR

The contact sensor has a magnetic switch that provides
feedback to the CC1310 GPIO. The CC1310 handles RF
communication and will send packets to the sensor bridge
based on this feedback.

Fig. 8. Motion Sensor PCB
Label Color Blue Red Green
Component PIR Motion Sensor | CC1310 | Antenna
TABLE III

COMPONENTS FOR THE MOTION SENSOR

The motion sensor has a PIR (passive infared) sensor
that provides feedback to the micro-controller. The CC1310
handles the RF communication with the sensor bridge.

D. CC1310 Micro controller
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CC1310 functional block diagram

Figure 9 shows the CC1310 TI Simplelink Wireless MCU
that the Wyze Camera uses as the main chip on the sensor
bridge as well as the contact and motion sensors. The goal
of our work was to focus on this processor, specifically
the RF core, its use, and how it interacts with the main
CPU. This is the radio peripheral of the CC1310 which can
be programmed to handle multiple protocol standards [9].
The radio protocols include 802.15.4 RFACE and ZigBee®,
Bluetooth® low energy, etc [10].

The system CPU is the main CPU in figure 9, also labeled
ARM® Cortex®-M3. It is the main system processor that
handles the application layer, running the user’s application,
and the high-level protocol stack [10]. It runs code from
the boot ROM and the system flash. The ROM is loaded
with a boot sequence, low-level protocol stack, device driver
functions, and a serial bootloader [10]. The system flash is
nonvolatile memory that saves certain data when the device
is turned off so that it is available again after restarting the
device [10].

The RF core contains a ARM® Cortex®-MO as shown
in figure 9. The MO interfaces the analog RF and baseband
circuitries, handles data to and from the system side, and
assembles information bits in a given packet structure [10].
The RF core has a dedicated 4-KB SRAM block and runs
almost entirely from a separate ROM [10]. This means we
might not have the code on the ROM, which contains useful
information, such as the RF processing code [10]. Currently,



we are most interested in how the MO and the RF core as a
whole communicates with the main CPU, M3.

The Direct Memory Access (DMA) moves information
from the radio RAM to the system RAM and vice versa,
if direct CPU access is not used [10]. However, the primary
way for the system CPU and radio CPU is the radio doorbell
module (RFC_DBELL), also known as the command and
packet engine (CPE) [10]. the RFC_DBELL contains a set
of dedicated registers, parameters in any of the SRAMs of the
device, and a set of interrupts to both the radio CPU, MO0, and
the system CPU, M3 [10]. This means that the RFC_DBELL
can be used to send information and instructions between
the system CPU and radio CPU by changing parameters and
interrupts in the RFC_DBELL.

The M3 processor uses a 20KB single-cycle on-chip
SRAM with full retention in all power modes, except shut-
down [10]. This SRAM contains packet information (TX and
RX payloads) and the different parameters or configuration
options for a given transaction [10]. This type of SRAM is
useful to share and store information between multiple parts
of the chip.

Using a TI debugger tool (XDS110) that is hooked to the
Wyze camera, we are able to dump the memory of the device
while it is in operation. This memory will contain a capture
of the SRAM at the moment that the dump occurred. Looking
into a capture of the SRAM it is expected that there will
be pieces of information such as packets and other volatile
structures.

These structures could be encrypted or encoded by the
CC1310 as part of the Over the Air(OTA) radio protocol
used by the RF core before they are transmitted [10]. Dis-
covering if these packets are encrypted, and understanding
the encryption protocols of these packets if they are, was one
the goals of this semester.

Not much is known about the RF Protocol being used by
the RF Core of the CC1310 however, sections V and VI go
further in depth about what was discovered about the RF
Protocol from the team’s research.

E. Technical Documents

The TI CC13x0, CC26x0 SimpleLink™ Wireless MCU
Technical Reference Manual Technical manual is the tech-
nical manual for the above mentioned CC1310 MCU. The
manual contains important information about how the chip
works, which can help with understanding how the Wyze
camera is using the chip.

The Texas Instruments CC13x0, CC26x0 Software De-
velopment Kit (SDK) is useful for understanding the Wyze
firmware. An SDK somewhat abstracts away the hardware
for developers wanting to create applications using the
chip. Furthermore, it allows developers to make application
programming interface (API) calls to tell the chip to do
something. Importantly for this team, the CC13x0 SDK
also comes with example code of the API being used. The
SDK allows the team to become familiar with the possible

methods, structures, and constants that can be found in
memory and their uses. Some methods available in the SDK
have already been discovered in the Ghidra disassembly. The
SDK also comes with example implementations of different
protocols and applications that can be implemented through
the API provided with the SDK. Specifically, there are
example implementations of RF protocol including packet
transmission and receiving. These examples include a main
thread, and setup functions to show exactly how the SDK
could be used in different situations.

III. EXISTING VULNERABILITIES

The Wyze Camera system contains vulnerabilities that can
be exploited to leak sensitive information. These vulnerabili-
ties are susceptible to several attacks, but the most significant
attack that we have found to the Wyze Camera is a replay
attack. Another concern is that the Wyze Camera’s firmware
is not signed, which can allow a user to modify it. Firmware
signing will be explained in detail in the succeeding sections
of this paper.

A. Replay Attacks

Replay attacks are detrimental to the security of the Wyze
Camera. In regards to the Wyze camera, the team initiated
replau attacks by replaying valid data transmissions. Replay
attacks indicate that messages do not have proper authentica-
tion. A countermeasure in response to replay attacks is to use
a nonce, which is a number used once [11]. Nonces allow
the authentication of messages to ensure that the messages
cannot be replayed. Since replay attacks can be played to the
Wyze Camera system, we know that the Wyze Over-the-Air
(OTA) protocol does not implement nonces.

Previously captured packets from a contact and motion
sensor were replayed to the dongle by an USRP N210. The
packets were successfully received by the dongle as it was
verified by the chosen input being displayed in the Wyze
application. The first packet associated with an alert contains
a 4-hex character value, that increments upwards each alert
and resets when a sensor is powered off. When captured
packets were replayed, this 4-character field returned to
the value that was captured. It is unknown what these 4-
characters represent, but given that they increment when
an event happens it is possible, they are some kind of
sequence counter. This 16-bit sequence counter increments
each time there is an event (open/close, motion/no motion).
Additionally, it resets to 0 every time the sensor is powered
down. Recorded packets are able to be sent in any order, as
long as the event types alternate between open and closed,
and will be processed successfully by the dongle.

Expanding on the replay attack, URH was used to mod-
ulate packets so that arbitrary changes could be made. The
settings used to successfully modulate packets can be seen
in Figure 10 below:



Encoding: Sample Rate: ™
Modulation Type: FSK
Bits per Symbol: 1

Frequendies in Hz: -19K/19K

Carrier Frequency: 906.7MHz
Carrier Phase: 0°
Symbol Length: 100

Fig. 10. Setting used to modulate packets

Using URH, arbitrary packets were able to be sent to
the dongle. Using a recorded contact sensor open alert,
nibbles and then bytes were zero’d out sequentially and then
transmitted with a contact sensor close alert in between.

B. Unsigned Firmware

In embedded systems, authors of the firmware may sign
that firmware. This is a cybersecurity technique used to
prevent modified or corrupted firmware to be flashed onto the
device. Signing a firmware entails generating a cryptographic
hash value, signing (encrypting) it with the private key of a
private/public key pair, and attaching it to the firmware [12].
The firmware on the devices of the Wyze system are not
signed, allowing unauthorized firmware to be flashed onto
the devices [13].

IV. SENSOR LOGS

The sensors and sensor bridge communicate through radio
frequency (RF) messages. The packets received from the
sensors are decoded by the sensor bridge. The type of packet
being sent, will contain information about the camera and
state of the sensors and other devices in the Wyze network.
Some commands for packets are included here, focusing on
ones that we believe are relevant to the work we are doing
[14]:

Name Type | Cmd
HD_Inquiry 0x43 | 0x27
HD_GetENR 0x43 | 0x02
HD_GetMac 0x43 | 0x04
HD_GetSensorList 0x53 0x30
HD_GetSensorCount 0x53 | Ox2E
DH_AddSensor 0x53 0x20
HD_StartStopNetwork 0x53 | O0x1C

TABLE IV
OTA PACKET COMMANDS

We were able to obtain log files for different communi-
cation scenarios between the devices by monitoring com-
munication at startup, and movement in front of the camera
and sensors. This allowed us to see differenc scenarios of
communication between the devices. Looking through some
of the RTSP (real time streaming protocol) log files, there
are certain parts of the communication that directly match
with the packet information.

A. Packet Decomposition

Communication between the camera and dongle happens
through over the air packets (OTA). Starting here, we are

able to see the communication methods, and logs which
provide information into the metadata of the camera, sensors,
and other devices which are connected to the Wyze system.
In Ghidra, we have created a serial packet register (struct)
which breaks down the important sections of the packets
which are sent OTA. The figure below shows the header of
those packets. The header is uniform over each packet, only
differing in contents, but the size is consistently 4 bytes.

[ tength | mode | magic |

Fig. 11. Ghidra Serial Packet Struct Header

The serial packets which are sent between the camera and
the sensor bridge differ in length after the header dependent
on the contents and command type of the packet being
sent. They will range between a length of 7 bytes to a
length of 64 bytes. Packet interpretation from the sensor
bridge begins by checking the two magic bytes and the
command byte: The magic bytes are the first two indices
of the package, the "mode" byte is the third byte of the
packet. The length byte is the fourth, and following this is
the command byte. The remainder of the packet length is
the payload. The Wyze camera system uses variable length
packets to communicate between the devices, however the
first 5 sections of the payload are consistent and present in all
packages. [14] Finding any information on the serial packet
protocol, could help us in determining the RF protocol used,
since this communication is between the camera and dongle.

o Magic bytes: [55] [aa] : is a packet received from
the dongle. Flipping the order, [aa] [55] refers to a
packet from the camera sent to the dongle. These
messages include commands which give information on
the system.

1) Finding the length of the packet

— The length byte of the packet is interpreted as
a decimal value (see Figure 12 below). And
is located 3 bytes from the first magic byte
(the 4th byte). The full length of the packet is
this value + 4. It can be inferred that this + 4
accounts for the 4 bytes previous to the length
index of the packet. Meaning, this byte actually
designates the number of remaining bytes in the
packet length.
Knowing the length of each packet is neces-
sary to differentiate between two consecutive
packets. The team confirmed that the Wyze sys-
tem communicates using packets with variable
length payloads. Therefore, without the packet
length, it would be very difficult to tell where
one packet ended and another packet began,
since the amount of bytes in each packet can



vary.
/* DD aa x/
if ((package->magic[readIndex] == 0x55) && (package->magic[readIndex + 1] == @xaa)) {
if ((package->magiclreadIndex + 4] == 0xff) || (package->magic[readIndex + 4] == 0)) {

readIndex = readIndex + 7;
if (packageLen == readIndex) {
*kparam_3 = 0;
}
else {
packagelLen = package->magic[readIndex + 3] + 4;
if ((int)(bufLen - readIndex) < (int)packageLen) {
_0041e2b8_log("dongle",4,"dongle_usb.c","handle_data_stream",0x498,
“packageLen :%d > buflLen:%d - readIndex:%d");
xparam_3 = buflLen - readIndex;
return 1;

Fig. 12. Ghidra interpretation of packet length in decimal

2) Finding the sub_mac value of the camera

— If the packet is not an ACK packet, the sub_mac
value of the camera can be found in bytes
[16:23] of the packet. Like the length of the
packet, the value of these bytes is interpreted
as decimal, and their ASCII values are the
sub_mac value.

3) Simply acknowledging that the previous packet is
received

— This simple ACK packet is 7 bytes long.

— The type byte (3rd byte) has only two op-
tions: 0x43 or 0x53. This difference is between
synchronous (0x53) and asynchronous (0x43).
When the type is 0x43 the response packet from
the other device will immediately be sent, with
any payload information the current command
requests. If the type is 0x53, along with an ACK
packet, the responding device will send packets
corresponding to the command byte. [14]

V. SIGNAL ANALYSIS OF THE RF PROTOCOL

The focus of the team’s current research is on reverse engi-
neering Wyze’s proprietary RF protocol between the contact
sensors, motion sensors and the sensor bridge. However, the
team must know whether or not the Over-The-Air packets
are whitened and/or encrypted before proceeding. The team
can gain insight into the problem by analyzing OTA captures
of recordings between the sensor bridge and the sensors.

A. Packet Captures

A packet capture intercepts a data packet crossing a point
in a data network, and the packet can be stored and analyzed.
An Ettus N210 SDR was used to capture packets going
between the dongle and sensors. GNU Radio was used
to record the packets. Depicted below is the GNU Radio
flowgraph used to record the packets and the block diagram
for data flow:

— i

Traffic Recorded

Wyze Wyze Sensor

Camera Bridge USREN210

Traffic Replayed

Fig. 13. Block Diagram showing where Packets and Logs were captured
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Fig. 14. GNU Radio flow graph used to record packets for playback

Serial logs can be directly captured by using WyzeSensePy
[15], a raspberry pi and a USB connection to the dongle,
which implements the communication protocol between the
dongle and camera. The dongle was acting as an interface to
send/receive messages to/from the contact sensor, and the
WyzeSensePy printed out the serial logs that contain the
serial data after the RF data (data sent over-the-air) reached
its destination.

B. RF Overview

Information from the contact and motion sensor is read by
their microcontrollers and modulated through Gaussian Fre-
quency Shift Keying (GFSK). URH [16] assists in analyzing
OTA packets to understand the protocol between the camera
and the dongle.

C. Sensor Over-The-Air Packet

URH can be used to gain a clearer understanding at what
is happening during the time between the motion and contact
sensor of the camera before the OTA packet is received. This
will allow the team to gain a better understanding of the
communication protocol as we can understand what happens
when the system is in close to an idle position. Seeing what
happens before an OTA packet is received can assist the team
in seeing the changes that occurs as it is received.

D. Packet Contents

Currently, not all data fields transmitted via OTA packets
is known. OTA packets are composed of what we suspect is



a proprietary protocol packet with a payload that contains the
application level payload which may consist of the: MAC,
Battery, Counter, and Event Type. It is likely that the OTA
packets from sensor-to-dongle contain the MAC of the sensor
which is used for identification, so when messages want
to be received by the sensors, the sensor would look for
its MAC address to see first if it is compatible to accept
the message. Sensors transmit how much battery they have
left to the dongle via the sensor bridge as it was seen
in the WyzeSensePy debug information with a marker that
read "battery =" some number. Finally, the type of event is
transmitted (open/close, motion/no motion). Given that we
know that the packets are largely the same, after reviewing
the different open and closed packets that only differed with
variation for battery/MAC/counter/event type, it is very likely
that the packets are encrypted, whitened, or both. The TI
SDK has been a key resource for understanding the physical
structure of the packets. We have an idea that Wyze is using
advanced TX/RX packets from TI since the packets may be
modified during the time it is sent over-the-air. The diagram
below provides more information:

cmd_prop_rx vs cmd_prop_rx_adv

The main differences between the packet format supported by the CMD_PROP_RX and the CMD_PROP_RX_ADV commands
are the Header field and the Address field

Ader
otosbyes

Case 2: 3 byte header, length information not directly after sync word.

With the advanced RX command, it is possible to receive packets with a length byte that is longer than 8 bits, and the length
information does not have to be located at the start of the header. Consider the packet shown in the figure below being

transmitted on the air, where the header is 3 bytes, and the length byte is the two last bytes of the header:
Header
Preamble Sync Word 24 bits Payload CRC
Preambl Sync Word 7 || s datat, data2, data3, datad, data5 CRC
reamble ync Wort 0X0005 , ; 3 5

To be able to receive this packet, and interpret the length correctly, the following must be set:

RF_cmdPropRiAdy . hdrConf . numHdrBits ox18;
RF_cmdPropRiAdy . hdrConf .numLenBits ox10;
RF_cmdPropRxAdy..hdrConf . lenPos 0x00;

Fig. 15. RX information

E. Communication Protocol

When an event is detected, the sensor transmits a packet to
the dongle. Once the dongle has received the packet, it replies
with an “ACK” communication that indicates it received the
event alert from the sensor. The dongle keeps state of sensors
in memory. For a contact sensor, sending two events of the
same type of alerts consecutively, will result in the second
message being considered an error, and not another event.
The state keeping appears only to be related to the state the
sensor is in (open/close,motion/no/motion) and not related to
the sequence counter embedded in the message.

F. Transmissions

Packets were transmitted through a frequency of
906.8MHz with a modulation type of FSK. URH alongside
smartRF allowed packets to be sent to the dongle and from
the dongle to the host. These recordings were taken from
three states of the motion sensor: motion, connect, delete.

G. Motion Sensor

URH was used to conduct an analysis of the motion sensor
captures as well as analyzing the log files by parsing the
contents to find commonalities. The goal of this was to to
gain more insight about the data being sent in the OTA
packets.

H. OTA Protocol

The most critical part of our research relies on answering
whether the OTA packets are whitened and/or encrypted. If
one knows this information, one could manipulate and spoof
messages to the Wyze Camera. To begin uncovering the
details of the OTA packets, the team reviewed work done in
previous semesters and continued along the outline depicted
in Figure 16.

Future work

This replay attack can be expanded on to send arbitrary packets to the dongle. Some work has already been done in
Universal Radio Hacker to support this,

Using URH's "Generate" functionalit, signals can be modulated and successfully received by the dongle.

The generation parameters are below:

Samgle
s

URH supports fuzzing profiles. On the "Generator* tab, click the load button in the top left. This will load a fuzzing profile
including the messages to modulate, modulation parameters, and pauses in between messages. This can be combined with
the serial logs from the dongle to correlate parts of the over-the-air (OTA) packet with the payload. The included fuzzing
profiles focused on trying to zero out entire nibbles/bytes and terating through the entire OTA packet, expected to see a
change in the serial output. However, no change was observed. Note that a fuzzed OTA packet will need to alternate with a
legitimate packet of the opposite event type (openjclose or motionjno motion) to change the dongle state so it will accept
the fuzzed packet.

Fig. 16. Outline of Continuing Research in the OTA Protocol

Using URH, the team would take a previously successful
replay attack and edit some of the bits. We would download
the edited replay attack (converted back to complex data
from the demodulated bits) from URH and uploaded it to
the flowgraph in GNUradio companion (Figure 14) to have
it tested to see if a valid open replay attack still occurred;
success occurred when the edited message was recognized
and captured by the Wyze Camera’s sensors. Once the flow
graph was executed and WyzeSensePy was running, the
newly created replay attack was tested to see if they were
still valid. The results of the experiment were inconclusive
because the edited replay attack was not able to be received
by the dongle. There are a multitude of reasons as to why
the edited message did not go through: the cyclic redundancy
check (CRC) [17] could have been incorrect, or possibly



the edited piece of the packet was indistinguishable and
couldn’t be interpreted (unencrypted or encrypted). One way
to overcome this setback would be to correctly recalculate
the CRC after bits are edited and/or to find the sync word.
The sync word, as mentioned later, will allow the team to
see where the data begins in the packet, which would allow
us to edit the data and see if the message can be replayed
and captured by the Wyze Camera as a valid message.

1. The Sync Word

A pivotal part of reverse engineering the OTA protocol
depends on finding the sync word that is used. The sync
word indicates where actual data in OTA packets begin.
It is indicated in the Proprietary RF User’s Guide [18]
that the default sync word is 32 bits and has the value
0x930B51DE. To find the sync word the team used TI’s
SmartRF studio along with a CC1310 Launchpad (it is part
of the development kit for the cc1310 chip — the same chip
that is used in the Wyze Camera [19]), we can configure the
launchpad to receive packets from other CC1310 devices,
such as the dongle and sensors. The team did not proceed
with this approach as they discovered a data structure that
revealed the sync word to be: 0x5555904E. However, in the
following paragraphs the team explains how they used TI’s
SmartRF studio to gain further insight about the sync word’s
connection to replay attacks.

Given that the team uncovered the sync word, we wanted
to answer the following question: can we locate the begin-
ning of the packet’s data if we have the correct sync word?
The team learned that even if the incorrect sync word was
inputted that SmartRF studio would still reveal the data as
is seen in the figures below:

(u]

Fig. 17. Packet Data is Revealed with the incorrect sync word

Fig. 18. Packet Data is Revealed with the correct sync word

However, the team was able to modify the packet data
and directly replay the message to the Wyze camera given
the correct sync word. The team made this discovery by
arbitrarily modifying bytes starting at the end of the packet
data, and replaying it to the Wyze camera’s application; the
application would change from open or close or vice versa.
The team also learned that the most significant 46 bytes could
not be modified or the message would become invalidated
and not be received by the camera. The figure below depicts
the most significant bytes of the packet (not highlighted) that
could not be modified to still have a valid message to replay:

Fig. 19. Packet Data is Revealed with the correct sync word

By learning that all the bytes, except the most significant
46 bytes, can be modified, the team learned that the packets
are not whitened or encrypted since those types of messages
cannot be modified and replayed because modifying them
would invalidate the message [20].

VI. REVERSE ENGINEERING THE RF PROTOCOL
A. Ghidra

The primary tool used to reverse engineer the binary files
is Ghidra. Ghidra is a software reverse engineering (SRE)
suite of tools developed by NSA’s Research Directorate in
support of the Cybersecurity mission[21]. The firmware of
the Wyze camera, that was obtained by dumping the memory
using a TI debugger, is loaded into Ghidra, and Ghidra
disassembles the program allowing users to reverse engineer
the program.

A helpful tool in the reverse engineering is the SVD loader.
SVD stands for System View Description and is a file that
contains information like the memory map and names of
memory addresses. This file can be loaded into Ghidra with
the SVD Loader [22] and Ghidra will automatically create
names in the memory map to make reverse engineering
easier.

As described above in section IV, the packets used for
communication contain a command number which describe
to the receiving device what action is required of it. This
command number was reverse engineered to determine what
type of packets the Wyze system is using. A simple scalar
search was conducted in the binary for the command number
for transmitting and receiving standard packets (command
number 0x3801 and 0x3802) and for transmitting and receiv-
ing advanced packets (0x3803 and 0x3804). These command
numbers were taken from the SDK for the CC1310 MCU and
also in the technical manual for the MCU. This technique
was used because it was a simple and quick way to attempt
to determine what kind of packets the Wyze system uses. The
results of the search were that only the command numbers for
the advanced packets were found in the binary file. This lead
the team to believe that the Wyze system is using advanced
packets for wireless communication. Advanced packets have
the option to repeat the preamble and have an arbitrary
amount of memory allocated for the payload.

Additionally, while conducting this search, the team found
what seems to be an important SRAM pointer. The pointer
was found in a function for receiving advanced packets. The
pointer points to the location 0x200022c0 in the SRAM. In
the function, the value stored in this location is compared to
several values which represent different command numbers.
This comparison is used to determine the subsequent actions
of the microcontroller. This could mean that the command



number is being stored at this location in the SRAM, which
could be a clue to the team for where to start looking for
the packet structures in the SRAM.

This location has also shown up in another area of the
team’s research. A snapshot of the contents of the SRAM
using Jlinks memory dump feature was taken with the contact
sensor pushed on and off, and a "diff" was performed of
those two files. This exact memory location showed up in the
output of the "diff", as shown in Figure 20 below. The lines of
interest are the lines beginning with 2270. This represents the
memory location 0x200022c0 with an offset of 0x20000050.
The contents of what is being stored in this memory are not
yet understood, but should be a focus of future research.

Fig. 20. Contents in location 0x200022c0

Another focus of this semester was to continue reverse
engineering the decompiled C code to find functions relating
to the RF protocol, labeling any new data structures, scalars,
and other relevant methods to RF and the data queue. To do
this, the function called radio;hree was reversed engineered,
which we assumed could be potentially related to RF proto-
col. This function mainly dealt with updating memory and
interrupt flags through other sub functions. One main sub
function that indirectly interacted with the transmission of
the RF protocol was called RFCDoorBellTo which takes an
passed in input from the radio;hree and sends a command
stating if a message is set to be transmitted. This indicates
that the function does not directly affect communication
of the OTA protocol but sends some kind of information
commanding the state of the radio.

B. Texas Instruments CCI13x0, CC26x0 Software Develop-
ment Kit (SDK)

In order to begin reverse engineering the disassembled
code in Ghidra, the team studied TI's CC13x0, CC26x0
SDK, introduced in Section II.

During our research several files in the SDK were in-
vestigated. One file that is focused on is the example file
rfPacketRx.c. Not only does this file include a mainThread
containing the setup of the RF protocol, it also demonstrates
the use of a callback() function. This is believed to be the
primary handler of packet intake through the data queue.

Another file of focus is RFCC26X2multiMode.c driver.
Although this driver file would seem to only apply to
CC26x2 MCU’s, the team believes that the same code would
also be used for the CC1310 MCU. This file contains many
important functions pertaining to the RF core, the radio
peripheral mentioned in Section II that would handle the
Over The Air protocol of the radio. The function the team
focused on is RF_init(), the function that handles initializing

the RF driver. The team believed this function could help
understand where the data for the packets is coming from
in the SRAM. There is a function labeled RF_init_maybe()
in Ghidra, which is labeled by the team during previous
semesters.

While exploring these two functions, the team realized that
the RF_init_maybe() function is likely not the RF_init() func-
tion from the SDK. One of the reasons for this conclusion is
that the function in Ghidra has four parameters in the func-
tion header, while the function in the SDK has no parameters
in the header. Additionally, the RF_init() function in the SDK
is called by several other functions to initialize the driver,
while the function in Ghidra is not called anywhere. To
confirm this, a search of the memory location of the function
is conducted over the entire binary file, but nothing is found.
It is not ruled out that Ghidra is misinterpreting the binary
or we are wrong in our assumption. However, given the
current evidence, the team believes that the RF_init_maybe()
in Ghidra is mislabeled and is in fact not the RF_init()
function. The team will be operating under this assumption
until new evidence is found or the assumption is confirmed.

C. RFC_DBELL

The RFC_DBELL located at memory location
0x40041000 is crucial for narrowing down the relevant
functions for finding the RF protocol [10]. The RFC_DBELL
is the primary means of communication between the system
CPU and the radio CPU. It contains a set of dedicated
registers, and a set of interrupts to both the radio and
system CPU [10]. Thus the RFC_DBELL allows the system
and radio to send information to each other through the
registers, as well as send commands to each other through
the interrupts. As such, all functions that reference the
memory location of the RFC_DBELL are likely to be
related to the RF protocol and are a high-priority for
reverse engineering. We can see these referenced functions
thanks to the work of the SVD loader which labeled this
memory region while still keeping the Ghidra created cross
references [22].

One of these functions is 00008bc0_radio_one, hereafter
referred to as Radiol, which is one of the functions that
interact with the interrupts stored in the RFC_DBELL sec-
tion of memory. Specifically, it modifies the values of the
RFCPEIEN/RFCPEIFG and RFHWIEN/RFHWIFG pairs of
interrupt registers in the RFC_DBELL. All interrupt registers
are 32-bits, and for the pairs that Radiol interacts with, each
bit represents a different interrupt that is only active when
the same bit is set in both registers. The RFCPEIEN/R-
FCPEIFG pair corresponds to Command and Packet Engine
Generated Interrupts, and the RFHWIEN/RFHWIFG pair
corresponds to RF Hardware Modules [10]. Radiol overall
appears to be more of a setup function, as it just modi-
fies the values in certain memory locations and interrupt
registers, and it always calls the 0000cfdc_radio_two and



0000ee60_radio_three functions before the function con-
cludes.

The 0000cfdc_radio_two, hereafter referred to as Radio2,
is also a function that interacts with the interrupts in the
RFC_DBELL. Like Radiol, Radio2 also modifies the val-
ues in the RFCPEIEN/RFCPEIFG and RFHWIEN/RFH-
WIFG pairs of interrupt registers. However, Radio2 calls
the 00013b34_RFCDoorbellSendTo function, which mod-
ifies the CMDR interrupt register. The CMDR interrupt
register is what passes command from the system to the radio
[10]. This clearly marks Radio2 as some kind of transmission
function that is meant to send information and commands to
the radio.

Another function found through the RFC_DBELL is the
RFCRTrimRead() function. This function is found in the TI
SDK in the rfc.c file. Within this function, an important
struct, called rfc_CMD_PROP_RADIO_DIV_SETUP_t, is
referenced. This is an important struct because it contains
information relating to the whitening protocol and the num-
ber of preamble bytes. Both of these pieces of information
are very helpful for understanding the OTA protocol. As
referenced in RF Command Structures (VI.G), this struct
was later found using a combination of static and dynamic
analysis and this would not have been possible without the
RFC_DBELL command registers.

D. dongle_app

The dongle app contains multiple areas of importance
in the RE area. Specifically, functions were found that
were crucial for the error handling that occurs. One of
the functions was msgsnd. This was found to be impor-
tant as it is responsible for returning several things, such
as message_queue_id, message_pointer, message_size and
message_flag, all of which are utilized in various ways across
the dongle_app.

Furthermore, msg_success_checker plays an important
role in determining whether a message being sent is success-
ful or not. This is shown by the return value of the function,
where 0 is successful and less than O is unsuccessful. There is
a loop that makes 3 attempts to get a successful message, and
if not, it is unsuccessful. This function is used in many places
where error messages occur, such as when verifying camera
info, setting camera to play an audio file or upgrading dongle
information. The O or less than O allows for easy program-
ming of error messages. This function is crucial for being
able to design error message protocols and for programming
error messages, as seen in the add_to_msg_queue function.

Finally, the add_to_msg_queue function adds messages to
a queue and is utilizes msg_success_checker to be certain
that a message added to the queue is successful or not. In the
instance that it is not successful, it will not add to the queue.
It also sends an error message containing the error number.
This process is a depiction of how the msg_success_checker
is used across multiple functions.

E. Important Data Structures

An important set of data structure was discovered that
starts at memory location 20003168. Each data structure
starts at an offset of a multiple of 0x30 from 20003168.
In the current snapshot of the SRAM there is a data
structure in 20003168 and 20003198. These data struc-
tures are believed to be important as they are referenced
extensively throughout the firmware, including in the Ra-
diol and Radio2 functions discussed in the RFC_DBELL
section. Moreover, in the two data structures present in
the current snapshot of the SRAM, they each contain a
reference to either rfc. CMD_PROP_TX_ADV_s_20002330
or rfc_CMD_PROP_RX_ADV_s_20002378. These are loca-
tions in memory that store important information relating to
the RF.

F. RF Data Queue

The CC1310 uses a data queue to maintain packets which
are transferred over the air. Data queues are used for trans-
ferring packets from the RF core to the main CPU and vice
versa [23]. Currently it is unknown if or how the Wyze
camera uses the data queue. Documentation in the CC1310
manual does not indicate that it is optional, and therefore we
are assuming it is being used.

Plans for confirming this include compiling the example
code rfPacketRx.c. In order to do this, cross compilation
is necessary. This is the process of compiling code on a
machine with a certain instruction set architecture (ISA)
(eg. x86) for a machine with a different ISA (eg. ARM).
This directly corresponds to the ISA differences in common
computers that run on an x86 architecture and the camera
dongle chip. A binary specifically compiled for an ARM
system is necessary to compare to the Wyze camera and
CC1310 since this is the ISA of the CC1310. There are
many cross compilers that exist that allow ARM cross
compilation. The one used for this project, which allowed
us to compile for our ARM processor was the buildroot
toolkit [24], which is a Linux kernel toolkit which focuses
on allowing cross compilation for embedded systems. Using
buildroot, it is possible to cross compile ¢ code meant for
an ARM processor on a x86 64 bit Linux machine.

Once the example code is compiled, we can then load
the binary file into Ghidra. This will allow a diff to be run
between the example code, and the Wyze Camera binary.
Focusing on similarities instead of differences between the
two files, it will be possible to see any sections that directly
relate to use of the data queue in the CC1310 Wyze binary.
This allows the group to locate useful address spaces that
may possibly hold packets in memory, or functions that
directly interact with recieved packets.

This was done using a Ghidra plugin: UBF Bindiff Helper
[25]. Which emphasized differences over similarities. This
made it much harder to find sections of code which were the



same in the binaries. However, immediately after loading the
files, the actual structs were found and we pivoted our focus.

G. RF Command Structures

As mentioned in the RFC_DBELL (VI.C) subsection
as well as the Packet Contents (V.A) subsection, there
are important RF structures that are referenced in code to
initialize, send, and receive packets with the radio. More
specifically, rfc. CMD_PROP_RADIO_DIV_SETUP ¢,
rfc_CMD_PROP_RX_ADV_t, and
rfc_CMD_PROP_TX_ADV_t are referenced in the code
and contain important information relating to the OTA
protocol. [10] This information will help in demodulating
and interpreting the packets received from the system. All
the data from these structs is defined in the appendix.

These structs, and a few other radio initialization
structs, were found in multiple binary files in
a contiguous memory region in the SRAM.
rfc. CMD_PROP_RADIO_DIV_SETUP_t  was  found
using a combination of static and dynamic analysis on the
contact sensors firmware. As mentioned in the RFC_DBELL
(VI.C) subsection, it is referenced in the RFCRTrimRead()
function. Dynamic analysis involves us actually executing
code on the system and analyzing things like register
values and this allows us to confirm which branch the
system takes. JLink is the tool we use to do this. Using the
JLink we set a break point on this function and stepped
through to find the address of the reference. Stepping
through this function confirmed the use of proprietary radio
commands and also it provided a possible pointer to the
rfc_CMD_PROP_RADIO_DIV_SETUP_t struct.
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Fig. 21. Assembly of RFCRTrimRead() showing RO referencing the struct

At address 0000bbca in figure 21 we can see reg-
ister 0 is being used as the base address to reference
rfc. CMD_PROP_RADIO_DIV_SETUP_t. The value of RO
is what we were looking for when dynamically executing
the function. We pulled the value after executing and went
to that memory location.

20002320
20002330
20002340
20002350
20002360
20002370
20002380
20002390
20002320

82 03 00 00 19 ad 00 00 80 02 03 04 40 1f 00 00
03 38 00 34 00 00 00 00 00 00 00 00 00 01 08 10
@5 00 00 84 @0 00 00 00 4e 90 55 55 bc 26 00 20
@7 38 00 34 98 3a 00 20 00 00 00 00 00 00 al 00
0f 33 33 00 21 02 a@ ed d8 02 3f a7 30 24 00 20
93 03 00 80 @5 00 00 00 04 38 02 00 00 00 00 00
00 00 00 00 80 @1 88 6a 4e 90 55 55 00 00 00 00
e8 03 10 58 00 00 fc 04 00 c4 22 64 00 00 00 00
60 3a 00 20 d8 24 00 20 c9 f7 01 00 67 f9 01 00

Fig. 22. Raw bytes at SRAM location of structs

Address 20002350 was the address pulled from RO.
As we can see in figure 22, the first bytes here show
the value 0x3807. This is the command number of
rfc_CMD_PROP_RADIO_DIV_SETUP_t. When we con-
verted the bytes to the correct data type, all of the fields
made sense based on the struct definition provided in the TI
SDK.

The RX_ADV and TX_ADV structs were found using a
scalar search of their command numbers in the dongle binary.
They were referenced directly in the code, so Ghidra could
lead us back to the structure in the SRAM, as compared to the
rfc. CMD_PROP_RADIO_DIV_SETUP_t structure, which
we needed more help with finding via dynamic analysis.

When we refer back to the bytes in figure 22, we can see
at address 20002330 there seems to be another command
number. This was interesting and led us to look for more
command numbers. In this one contiguous region, the RF
command structs of PROP_RADIO_DIV_SETUP, RX_ADYV,
TX_ADYV, CS, NOP, and FS were found and we were able
to set these data types to their correct values. We confirmed
that these data types were in both the dongle and the contact
sensor binary with matching values.

These structures solve many of the issues we had relating
to the OTA protocol. They contain lots of information
describing how the RF portion of the packets are set up
and sent including the sync word, the preamble, the baud
rate, header information, the whitening mode, and many
more important values. Please refer to the appendix for the
struct definitions and initialization values as found in the
SRAM of the dongle. When refering to the values, if there
is a mode defined, you can find the mode definition in the
struct definition in rf_prop_cmd.h in the TI SDK. The SDK
provides propritary radio struct definitions in this file and
defines the use for many of the values. Using this information
will now be a primary focus of future work as we can now
work to demodulate and interpret data received from the
system.

VII. CONCLUSIONS

A. Future Goals

As mentioned in RF Command Structures (VI.G), in-
formation relating to how the Wyze system initializes its
proprietary radio has been found in SRAM. Now that we
have this OTA protocol information we need to work on
demodulating and interpreting packets from the system. With
the whitening protocol we can demodulate the IQ data
received and work on removing RF information from the
packets so we just have application data. We can take this
application data from different states of the system and see
what changes. Once we have a complete understanding of
the packets, we can work on creating a device to spoof the
system.
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APPENDIX

rfc_ CMD_PROP_RADIO_DIV_SETUP_t
RF_cmdPropRadioDivSetup =

{

}s

.commandNo = 0x3807,
.status = 0x0000,
.pNextOp = 0, // INSERT APPLICABLE POINTER:
(uint8_t*)&XXX
.startTime = 0x00000000,
.startTrigger .triggerType = 0x0,
.startTrigger .bEnaCmd = 0xO0,
.startTrigger.triggerNo = 0x0,
.startTrigger .pastTrig = 0x0,
.condition.rule = 0x0,
.condition.nSkip = 0x0,
.modulation . modType = 0Oxl1,
.modulation. deviation = 0x14,
.symbolRate. preScale = OxF,
.symbolRate .rateWord = 0x3333,
.symbolRate . decimMode = 0x0,
.rxBw = 0x21,
.preamConf.nPreamBytes = 0x2,
.preamConf . preamMode = 0x0,
.formatConf.nSwBits = 0x20,
.formatConf.bBitReversal = 0x0,
.formatConf.bMsbFirst = 0x1,
.formatConf.fecMode = 0x0,
.formatConf.whitenMode = 0x7,
.config.frontEndMode = 0x0,
.config.biasMode = 0xl,
.config.analogCfgMode = 0x2D,
.config .bNoFsPowerUp = 0x0,
.txPower = 0xA73F,
.pRegOverride = pOverrides ,
.centerFreq = 0x0393,
.intFreq = 0x8000,
.loDivider = 0x05

rfc. CMD_PROP_RX_ADV_t
RF_cmdPropRxAdv =

{

.commandNo = 0x3804 ,
.status = 0x0000,
.pNextOp = 0, // INSERT APPLICABLE

POINTER: (uint8_t:*)&XXX

.startTime = 0x00000000,
.startTrigger.triggerType = 0x0,
.startTrigger .bEnaCmd = 0xO0,
.startTrigger.triggerNo = 0x0,
.startTrigger.pastTrig = 0x1,
.condition.rule = OxI1,
.condition.nSkip = 0x0,
.pktConf.bFsOff = 0x0,



.pktConf.bRepeatOk = 0x0,

. pktConf.bRepeatNok = 0x0,
.pktConf.bUseCrc = 0xl,
.pktConf.bCrclncSw = 0x0,
.pktConf.bCrcIncHdr = 0x0,
.pktConf.endType = 0x0,
.pktConf. filterOp = 0xl1,
.rxConf.bAutoFlushIgnored = 0x0,
.1xConf.bAutoFlushCrcErr = 0x1,
.rxConf . blncludeHdr = 0x1,
.1xConf . blncludeCrc = 0x0,
.rxConf.bAppendRssi = 0xl1,
.rxConf.bAppendTimestamp = O0xl,
.rxConf.bAppendStatus = 0x0,
.syncWord0 = 0x5555904e,
.syncWordl1 0x00000000 ,
.maxPktLen = 0x03ES8,
.hdrConf.numHdrBits = 0x10,
.hdrConf.lenPos = 0x0,
.hdrConf.numLenBits = 0xB,

.addrConf.addrType = 0x0,
.addrConf.addrSize = 0x0,
.addrConf. addrPos = 0x0,
.addrConf.numAddr = 0x0,

.lenOffset = OxFC,
.endTrigger.triggerType = 0x4,
.endTrigger .bEnaCmd = 0x0,
.endTrigger.triggerNo = 0x0,
.endTrigger.pastTrig = 0x0,
.endTime = 1680000000, //7 minutes
.pAddr = 0,

.pQueue = 0, // INSERT APPLICABLE
POINTER: (dataQueue_t#)&XXX
.pOutput = 0, // INSERT APPLICABLE
POINTER: (uint8_t*)&XXX

}s

rfc_CMD_PROP_TX_ADV_t RF_cmdPropTxAdv =
{
.commandNo = 0x3803,
.status = 0x0000,
.pNextOp = 0, // INSERT APPLICABLE
POINTER: (uint8_t*)&XXX
.startTime = 0x00000000,
.startTrigger.triggerType = 0x0,
.startTrigger .bEnaCmd = 0xO0,
.startTrigger.triggerNo = 0x0,
.startTrigger .pastTrig = 0x0,
.condition.rule = 0xl1,
.condition.nSkip = 0x0,
.pktConf.bFsOff = 0x0,
.pktConf.bUseCrc = 0x1,
.pktConf.bCrclncSw = 0x0,
.pktConf.bCrclncHdr = 0x0,



.numHdrBits = 0x10,
.pktLen = 0x5,
.startConf.bExtTxTrig = 0x0,
.startConf.inputMode = 0x0,
.startConf.source = 0x0,
.preTrigger.triggerType = 0x4,
.preTrigger .bEnaCmd = 0x0,
.preTrigger.triggerNo = 0x0,
.preTrigger.pastTrig = OxIl,
.preTime = 0,
.syncWord = 0x5555904e,
.pPkt = 0, // INSERT APPLICABLE
POINTER: (uint8_t*)&XXX

}s



