
SWIFT Wireless Fire Alarm System Analysis
Donald Lawrence

College of Computing
Georgia Institute of Technology
Atlanta, Georgia, United States

dl@gatech.edu

Daniel Chou
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

dchou33@gatech.edu

George Kokinda
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

gkokinda3@gatech.edu

Yeonhak Kim
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

ykim713@gatech.edu

Chris Roberts (Advisor)
Principal Research Engineer

Georgia Tech Research Institute
Atlanta, Georgia, United States

chris.roberts@gtri.gatech.edu

Garrett Brown
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

gbrown94@gatech.edu

Sidney Wright
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

swright92@gatech.edu

Abstract—The market for fire protection systems has been
transitioning from traditional wired networks to modern wireless
mesh networks that offer superior convenience and manage-
ment tools for building administrators. However, in addition
to convenience, wireless networks expose new opportunities for
attack that were not possible on wired systems. Despite the
danger that these vulnerabilities can pose for users of a wireless
fire system, relatively little research has been conducted in this
area. This study investigates and uncovers the vulnerabilities in
the well-known building management manufacturer Honeywell’s
SWIFT system, specifically with regards to its SLC connection to
previously existing wired devices, including pull stations, smoke
detectors, and the fire alarm control panel.

I. BACKGROUND

As important parts of building safety, fire alarm systems pro-
tect against fire emergency situations in which it is necessary
to notify building occupants and begin evacuation protocols
immediately. Gaining control of a building’s fire protection
wirelessly would allow attackers to conduct malicious activi-
ties such as deploying ransomware, triggering false alarms, de-
livering false information to the building’s monitoring system,
or impairing fire detection and mitigation. With these attacks
available, attackers gain tools to exploit encrypted material for
elevated access to the system. Removing the vulnerabilities in
such a system improves its ability to provide the protection it
was designed to deliver and defends against inevitable cyber
attacks.

A. The SWIFT System

The SWIFT system is a departure from the methods used
by Honeywell’s other building management tools. Rather than
being based on a traditional wired setup, SWIFT components
communicate wirelessly, which allows for use cases that

a traditional fire alarm system would not be able to fill.
Additionally, the SWIFT system is designed to integrate into
existing wired setups, supplementing the existing devices with
wireless ones. This strategy allows customers to take advan-
tage of new technologies without a full system replacement.
While Honeywell is offering many of the same wired devices
in a wireless format, such as smoke detectors, audio/visual
alarm systems, and pull stations, there is a device specific to
the SWIFT system that allows for its integration with existing
wired systems, known as the wireless gateway. Although the
SWIFT system is designed around a mesh network to provide
redundancy, all wireless connections must be routed through
the gateway in order to reach the rest of the wired system.
Thus, the gateway serves as a single point of failure, making
it a prime target for exploitation.

Although the gateway is a singular device, it actually
contains two separate co-processors based on the TI MSP403X
architecture. One processor, dubbed RF, handles communica-
tion with the wireless devices on the mesh network, and also
provides management functionality such as firmware updates
and mesh configuration. The other processor, dubbed SLC,
translates the messages sent by the wireless devices into a
format that the existing wired FACP (fire alarm control panel)
can understand. These wired devices communicate via SLC, a
communication method that allows for addressable control of
wired devices.

B. Prior Research

Previous research by the team [1] on the SWIFT system
examined the OTA (over-the-air) and serial (W-USB) protocols
used by the system. In this study, a HackRF One was utilized
to capture the RF signals being emitted from SWIFT’s fire



alarm pull station. Thorough analysis of the OTA signal inside
Universal Radio Hacker led to the initial partial decoding of
the OTA protocol. The reverse engineering of SWIFT Tools (a
companion application used to manage the wireless network)
aided in decoding the serial protocol, and a systematic com-
parison between the two protocols resulted in the full decoding
of both the OTA and serial protocols. This research has proven
useful in determining how firmware updates are transmitted to
the various devices on the mesh network.

Another prior study [2] on the SWIFT system analyzed
the wireless gateway component of the SWIFT system. The
gateway serves as the heart of the SWIFT system because
all wireless devices on the mesh network must communicate
with the gateway in order to reach the Fire Alarm Control
Panel (FACP), which does not have the ability to communicate
with the wireless devices directly. In this study, the team
examined the gateway’s firmware binaries by utilizing the
Ghidra reverse engineering suite. Additionally, this research
launched efforts towards uploading a custom firmware binary
to the gateway. An authentication bypass was found that
allows for any actor with a wireless dongle to gain control of
the gateway’s management functions. This research has been
critical to the progress made during this semester, as the team
aims to build upon this existing work by continuing analysis
of the gateway’s firmware, while also making great strides
toward a full takeover of the fire alarm system.

This paper will focus on 1.) an analysis of the gateway’s
SLC firmware, 2.) the decoding of the SLC protocol, and 3.)
uploading a custom firmware to the gateway.

II. SLC BINARY ANALYSIS

A. Preparing The Binary

To jump-start analysis of the SLC binary, the team has made
attempts to use BinDiff [3], which was previously utilized
for the RF binary, to see if relevant analysis on previous
binaries could be transferred. After building BinExport [4],
the Ghidra extension for exporting analyzed binaries in the
format BinDiff requires, for the current version of Ghidra
(10.1.2), diffs between the SLC binary and both the RF and
wireless pull station firmware can be performed, as those are
the binaries the team had analyzed in previous semesters.
These diffs did not yield many common code blocks, as seen
in 1, which did not come as a surprise, considering that the
SLC and wireless sides of the gateway differ at a structural
level, and also use different protocols for communication.

To be able to communicate with the physical SLC lines,
the SLC firmware needs to make liberal use of the peripherals
provided by the MSP430 processor. As documented in the
MSP430 family user’s guide [5], as well as the datasheet for
the specific model used in the gateway [6], these peripherals
are mapped to a certain address range in the processor’s
memory. The team utilized a symbol mapping developed in
a previous semester and the “ImportSymbolsScript.py” script
from within Ghidra to automatically import these symbol
labels.

Fig. 1. BinDiff results on SLC firmware vs RF firmware. The green area of
the pie chart represents the number of functions which show some similarity
between the two binaries. However, most of these functions end up being 10
instructions or less.

Fig. 2. Example of debugging strings sent to USCI A in the function
“main loop”.

The last task necessary to complete before analyzing the
SLC firmware was to correctly set up the memory map and en-
try point for Ghidra. Again, as documented in the user’s guide,
the program code starts with a function called c_int00,
located at address 0x5c00 in memory. After separating the
memory addresses into blocks in Ghidra’s “memory map”
window, and marking the address 0x5c00 as an entry point,
Ghidra’s auto-analysis could start the reverse engineering
process.

B. USCI A Debugging Output

When looking at the decompiler’s output for the SLC
firmware, one function immediately stands out, as its only
parameter is strings such as ”SLC MAJOR_VERSION_NUM
:” and \HW ver compatible 3.0" (2). This function
can be quickly identified as sending the string one charac-
ter at a time to a memory-mapped peripheral register la-
beled “UCA1TXBUF”. Cross-referencing this with the MSP430
user’s guide, it seems that these strings are being transmitted
to a Universal Serial Communication Interface (USCI) port,
likely for debugging or logging purposes. A major benefit
of having this function being used is that it gives reliable
information on the purpose of functions that would otherwise
take a lot more effort to discern.

C. Identifying The Main Loop

One of the functions called in c_int00 ends with a
“do-while true” loop, which likely contains the logic for



relaying messages from the wireless mesh network to the fire
alarm control panel (FACP) via the SLC. This would imply
that the code before this loop initialized processor peripherals,
global data structures in memory, and the like.

D. Initialization Functions

Building on this idea, the team decided to start by looking
at these initialization functions, so that the purposes of var-
ious peripherals and global data structures used in message
processing would be clearer. Most of these functions are
ordinary housekeeping, such as initializing the power manage-
ment module, clearing memory, and logging firmware version
numbers to the USCI port mentioned earlier. However, one
interesting function sets up the chip’s direct memory access
(DMA) module to copy bytes received via another USCI port,
USCI B1, into a 200-byte long buffer in memory, and to
copy bytes in a different buffer to that port’s transmit register.
Although the team initially conjectured that this port may be
interfacing with the SLC output, further investigation, detailed
below, casts doubt on this hypothesis.

E. USCI B Messages

Looking at the messages received and processed by the
gateway, it seems that these consist of a small 6-byte header,
followed by a number of command packets, identified by their
first byte. So far, there appear to be 8 distinct commands, one
of which is a sync command, and another is a boot command
that appears to perform a soft reset of the gateway. Two other
commands seem to handle adding and removing devices to the
SLC, but that hypothesis has not been confirmed. The purposes
of the other commands has not yet been determined.

F. Ports

Another goal of the firmware analysis is to determine how
the SLC chip communicates with the physical SLC wire,
passing information from the wireless devices to the FACP.
This would obviously be done through a port, of which the
MSP430X architecture provides two types - standardized serial
ports, such as USCI A1 and B1, discussed previously, and
general-purpose IO ports, which are 8 bits wide with each bit
being individually configurable as input or output. Of these,
the firmware appears to regularly use only ports USCI A1,
USCI B1, general-purpose port 1 for both input and output,
and general-purpose ports 2 and 8 strictly for output. However,
during initialization, general-purpose ports 5, 6, and 7 are also
used as output. While it is clear that port USCI A1 is used to
assist with debugging, the purpose of the other ports was not
as clear. Therefore, the team attempted to perform continuity
tests on the gateway hardware to better understand what each
port’s pins were connected to.

G. Continuity

While these tests were limited due to time constraints, the
preliminary results were interesting. The team prioritized two
tasks: determining what the USCI B1 port on the SLC chip
is connected to, and determining which ports, if any, could

be used to control the SLC output. For the former, the team
was unable to determine a conclusive connection between the
USCI B1 port and any other wire on the gateway. However,
the multimeter used to perform the tests did show a non-zero
reading when testing connectivity between the USCI B1 port
and several pins on the RF processor. Since there was no
beep indicating a clear connection, this result warrants further
investigation. As for the ports controlling SLC output, the
first observation the team made was that since the SLC line
carries a 24 V voltage, it is unlikely that any GPIO pin on the
processor is directly connected to it, as these are rated for a
maximum voltage of 5 V or less. However, there were multiple
definitive connections between pins on both processors and the
SLC output wire. Again, this will likely be a high priority goal
for the team’s future work.

H. Firmware Analysis

From observing decompiled outputs from Ghidra, it was
found that the SLC firmware uses two USCI channels
to communicate with the external devices. One is the
USCI A channel and the other one is the USCI B channel.
According to the MSP processor manual, it provides 3
different USCI modes which are UART, I2C, and SPI.
By further investigating program texts and string values
in the decompiled program, it was discovered that the
firmware was using SPI mode (Synchronous Peripheral
Interface). The specific related portions revealing the mode
can be found in the Ghidra by searching the key words
“synchronous” and “SPI.” A string “Reinitialize SPI DMA”
was passed onto the function send str to USCI A1(param 1)
which then passes the value as byte stream into
the function send byte to USCI A1(param 1). The
final destination of the corresponding function is
USCI transmit buffer UCA1TXBUF. There was a corre-
sponding buffer named USCI receive buffer UCA1RXBUF.
Thus, there were two types of buffers found which one
(transmit buffer) handles outgoing data and the other (receive
buffer) handles incoming data. According to the naming
conventions listed in the MSP manual, buffers starting
with UCA[buffer number]TXBUF stands for USCI A
transmit buffer and UCB[buffer number]TXBUF stands for
USCI B transmit buffer (UCA[buffer number]RXBUF and
UCB[buffer number]RXBUF are receive buffers for each
corresponding types). Two types of functions were related
to USCI A and USCI B channels for receiving and sending
data which were send byte to USCI A1(param 1) and
USCIB1 receive buffer0(param 1). Functions for receiving
data from USCI A channel and sending data to USCI B
channel were not found or decoded.

III. SIGNALING LINE CIRCUIT PROTOCOL

A. Background

Signaling Line Circuit (SLC) is a data and power bus that
transmits vital information and power between the devices
that make up a complete fire alarm system [7]. The National
Fire Protection Association (NFPA) classified SLC in such a



way that it can be implemented on fiber optics and wireless
transmitting devices as well as electricity as it is a protocol.
This differs from traditional fire alarm circuitry. The traditional
or ”conventional” circuit is binary in nature, meaning it is
either off or on, while SLC is more akin to a network cable
which has data bursts and several types of signals. Once a
device is done carrying a signal then another may go through
the line.

The SLC protocol itself contains many diverse types of
messages. These messages range from simple polling from
the Fire Alarm Control Panel (FACP) to seeing which devices
are on the network and receiving the polling message as well
as alarm signals incoming to the FACP from a pull station or
smoke detector. Each addressable device is programmed into
the control panel. The panel polls a specific device address.
Once that device replies the next device is polled. This means
that each SLC message gets broadcasted to all other devices
on the network. However, this is not the only way the FACP
populates the network. SLC can support conventional devices
as well by means of only supplying power to them without
the need for polling.

SLC provides both power and signals. The information that
can be seen on the line is data bursts of SLC messages being
sent to devices and in between these data bursts there is a
length of time for non-data which is when the addressable
modules charge their internal SLC power circuit capacitors.
Most of the time SLC has full voltage. This voltage is
interrupted occasionally for transfer of data. The way data
is transferred is rapidly turning off power and turning it on
(shorting the circuit) which can be interpreted as binary bits.
This binary data itself is proprietary to the manufacturer.

Each SLC data packet can be expressed in two sections.
The first section, located at the beginning of the message,
contains the address information relating to the specific device
the message is being sent to as well as information regarding
the address or name of the sender. The way the SLC protocol
can populate this field is proprietary. The second section is
monitoring information and commands being sent to devices.
The first data packet of information is an address of the device
the message is being sent to then additional digital information
or analog information as well. The information within these
packets is all proprietary to the manufacturer. [8]

B. FlashScan Protocol

FlashScan is the branding of a patented advanced SLC
protocol created by Honeywell that enables communication
with a plurality of devices over traditional bidirectional serial
wiring. Compared to the older Classic Loop Interface Protocol
(CLIP), which polls devices in the loop sequentially, FlashScan
is able to address groups at a faster rate with the same detector
and control module hardware [9]. While CLIP is backward
compatible with FACPs that do not support FlashScan, Hon-
eywell’s SWIFT gateway does not support CLIP as a means
to connect to wired components through an FACP [10]. As a
result, the FlashScan protocol is the key to understanding the
SLC component of the gateway, and the patent itself contains

Fig. 3. Example of a single device bit pattern sent to poll control unit 99.
[11]

Fig. 4. Breakdown of address word and command word sent using FlashScan
SLC [11]

an extensive explanation, including bit sequences, timings, and
example commands. [11]

Utilizing the patent, a foundation for the principles of the
protocol can be made although the exact implementation of
the gateway could be a slightly modified version. Single unit
addressing is achieved by reading bits A0-7 as an address, two
digit decimal for example. No unit identifiers are provided in
this case.

To accomplish group addressing, bit streams are assembled
with a address word along with a command word. The address
word is then broken down into words signifying the plurality
identifier, escape code, unit identifiers, and control bits, as
displayed in Fig. 4. When identifying groups, the protocol
creates two types of devices denoted by 1 or 0 in bit A8:
controls units, such as pull stations, and detectors, such as
smoke and temperature detectors. Bits A0-3 signify an escape
sequence for group addressing mode, varying per system
but hexadecimal F for example. Each group 0-9 corresponds
with bits A4-7, which represents the group number to be
addressed. Within the group, bits G0-9 serve as unit identifiers,
deciding which devices in the group should read the bit stream
according to a preset unit address. A group of control units or
detectors can be sent an address and command word, checking
if their respective bits are set, executing the command, and
returning signal for a command confirmation or a sensor
reading, respectively. In order to return a sensor reading,
detectors can simultaneously draw current from the SLC line,
allowing the FACP to compare it to a preset threshold to detect
an alarm condition. Additionally, bits B0-2 determine the
command to be executed for control/command units. Finally,
the last bit P is a parity bit used as a checksum to detect errors
in reading signals. After the checksum, there is an information
interval of variable time, depending on the command selected,
that allows for characters to be transferred between the FACP
and a device. The interval is composed of sub-intervals where,
in this instance, each character is 305 µs. The protocol is not
limited by the implementation of the information transmission,
but examples of varying speeds are provided. It is currently
unclear whether the gateway uses one of the communication
protocols outlined in the patent.



Fig. 5. Example SLC message capture in Logic Analyzer. The message above
is digital and the message below is its analog counterpart.

C. Captured SLC Signals and Analysis

SLC signals were captured using Salae’s Logic Analyzer
tool and analyzed using the companion software Logic Ana-
lyzer. The Logic Analyzer was left running while the system
was idle and only two different messages were captured at this
time. The team, at this time has not identified the specifics of
the messages, however according to SLC documentation they
are presumed to be polling messages between devices. This
has not been confirmed at the time of writing.

The length in time of one of the messages was measured to
be 11.769ms long. This message repeats about every 98.75ms.
The other message was measured to be 9.5ms long which
repeats in the same length of time as the previous message.

Computing the time differences between value changes as
exported utilizing Logic Analyzer’s export as CSV function, a
time array of each time difference can be created. That is for
each value in the array time[], the value of time[i + 1] -
time[i] is calculated. Calculating this over the SLC values
and finding the minimum yields a time of 0.3748ms between
value changes (i.e., a 1 to a 0 and vice versa). Dividing by the
total time of message one and dividing by 8 bits in one byte
a value of around 4 bytes in each message can be arrived to.
The team at the time of writing has not confirmed this value
to be correct and was arrived at with the data captured.

The team built a script in python to convert these signals into
bytes. Utilizing the threshold value, it is possible to subtract
it from each time value until the current time value being
subtracted is less than the threshold value itself. From here a
bit is placed corresponding to the value captured at this time.
In summary, for each threshold value amount of time we take
the corresponding value at that time and create a bit stream
extrapolating the assumptions made earlier. The exact bytes
being created are not confirmed to be correct, however, the
script can be extended to include different timing constraints
and values. More research is needed to modify the script to
generate a definitively correct byte stream.

IV. FIRMWARE INTEGRITY CHECKS

A. Background

When examining potential attack vectors for the SWIFT
system, the SWIFT’s wireless gateway is liekly near the
top of the list in terms of targets for cyber-criminals. The
gateway’s bridge-like characteristics, connecting the wireless

devices of SWIFT’s mesh network to the FACP, scream of
a single point of failure for compromising the system. One
way for a bad actor to obtain control of the gateway is
through uploading a custom firmware to the device. SWIFT’s
companion application, SWIFT Tools, makes this process easy
enough, and although it’s not entirely likely, it’s the job
of security professionals to consider every possibility. The
team’s previous research [CITE 2] found taking control of
the gateway to be a difficult task. The following research
is conducted with an intermediate goal in mind: bypass the
gateway’s MSP430 CRC check. In other words, upload any
useless custom firmware as a proof of concept. Future efforts
will look at the possibility of demonstrating control of the
system.

An issue faced by the team has been the lack of insight
into how the CRC check is being performed by the gateway.
The gateway is utilizing a rather strange setup of overlaying
two separate firmware binaries in the same address space. This
made it difficult to develop an overarching understanding of
the exact process of firmware verification. Relatively early
on, it was found that the built in CRC functionality of the
MSP430X processor family was not being utilized. Rather,
the CRC check is being done in software. A lookup table
for a CRC16-CCITT algorithm was found embedded in the
gateway’s BU firmware, and this became the starting point
for analysis within Ghidra, by examining which processor
instructions reference this block of memory.

B. Gateway Bootup Process

At powerup, code execution begins in the BU firmware, a
small binary that contains logic for checking integrity of the
rest of the device’s flash memory, along with a reduced set of
commands receivable over RF that allow for recovery of the
device in the event of a failed update. The wireless gateway
utilizes a simple CRC16 algorithm to ensure data integrity,
which can be bypassed by determining the location of the
reference checksum value in each firmware binary. The RF
and SLC processors each contain their own bootup firmware,
but the team is focusing on the RF side, as it handles wireless
firmware update functionality, which is of particular interest.

6 illustrates the general layout of the RF processor’s flash
memory, showing the overlaying of the RF and BU firmwares
as well. The BU firmware performs a separate check of each
block of memory shown, entering an infinite loop if the BU
portion fails the checksum, and entering a special recovery
mode if the RF portion fails. By utilizing the debug features
provided by the TI Code Composer software, the team can find
the exact ranges of memory being accessed, allowing for a tool
to be developed that will calculate the CRC for an arbitrary
firmware binary.

C. CRC Calculation Tool

Upon deciphering the memory ranges for which the CRC
calculation is performed in the WSG_BU3_RF_3_0.bin and
WSG_RF_3_0.bin binaries, the team created a tool that
reads these two SWIFT-provided firmware files and performs



Fig. 6. A high-level diagram of the RF processor’s memory layout.

a correct CRC calculation. Further, the tool is capable of
replacing the hard-coded CRC values in these two binaries
with the newly calculated CRC value – in essence patching
the firmware (ensuring it will pass the gateway’s MSP430 CRC
verification). The tool described is a python script that accepts
the gateway’s firmware files as input. Currently, the script is
limited to performing accurate CRC calculations and patching
for the two aforementioned binaries; however, the script can
easily be extended to account for any version of SWIFT’s
provided binaries. Running the script in its most basic form
simply prints out the calculated CRC value for the firmware.
In this form, the script is most useful for when paired with
an Honeywell-provided binary as it allows for verification of
what the hard-coded CRC value is. Running the script with
the -p flag causes the firmware to be patched with calculated
CRC value. In this form, the script is most useful when paired
with a custom firmware that needs to have its CRC adjusted
so it can be uploaded to the Gateway as a valid firmware.

V. FIRMWARE UPLOAD PROTOCOL

A. Background

SWIFT Tools, the companion application that manages
Honeywell’s SWIFT suite, offers a firmware upgrade/down-
grade interface in its user interface. However, in the world
of a bad actor, spending valuable time operating a GUI is
likely not realistic. On top on this, SWIFT Tools isn’t natively
available on Linux systems. In order to bypass this restriction,
a bad actor could attempt to re-implement SWIFT’s firmware
upload protocol for the Wirelesss Gateway (WSG) in their own
scripts. To test the feasibility of this, this section explores what
is SWIFT’s firmware upload protocol for the WSG and how
can it be re-implemented.

B. Wireless Gateway Upload Protocol

Previous research by the team [1] [2] has explored the
reverse engineering the SWIFT Tools application in an open-
source .NET decompiler called ILSpy. Since SWIFT Tools
is an unobfuscated .NET application with several supporting
DLLs (dynamic link libraries), ILSpy allows for the parsing

of all of SWIFT Tools’ symbols including interfaces, classes,
functions, and global variables. One DLL labeled Wireless-
Plugin.dll contains most of if not all functions related to
the firmware upload protocol. More specifically, it contains a
function named firmwareUpdateScanObject() that handles the
firmware upload process for the Gateway. Through analysis
of this function, the firmware upload protocol for the Wireless
Gateway can be deciphered and broken into six steps.

The first step in the firmware upload protocol is to place
the Gateway in bootloader mode by sending the Gateway
a packet with the BootloaderIn message type (2f in hex).
Placing the Gateway in bootloader mode largely reduces its
functionality and disbands the mesh network. This mode is
used by the Gateway for receiving firmware updates. If SWIFT
Tools detects that the Gateway is already in bootloader mode
through a previous background scan, then this step will be
skipped. This message type is sent once per processor which
amounts to two times (one for SLC and one for RF). This step
is implemented by the putInBootLoaderMode() function which
is called inside the firmwareUpdateScanObject() function.

The second step in the firmware upload protocol is to
select which of the Gateway’s processors (RF or SLC) will
have its firmware upgraded/downgraded by sending the Gate-
way a packet with the SelectionRequest message type (61
in hex). Since the Gateway has two MSP430 (specifically
MSP430F5437A) processors on its circuit board, it’s neces-
sary to select which processor to upgrade/downgrade before
uploading firmware to the Gateway This step is implemented
by the selectionRequest() function which is called inside the
firmwareUpdateScanObject() function.

The third step in the firmware upload protocol is to
prepare the processor selected in the previous step for a
firmware update by sending the Gateway a packet with the
AppEraseDownload message type (5b in hex). As of now,
the exact purpose of the AppEraseDownload message type
hasn’t been strictly defined, but there’s two working ideas:
1.) erases the selected processor’s non-BU (Boot-Up) portion
of firmware before a firmware update or 2.) notifies the
selected processor to allow for its firmware to be overwritten
by the incoming firmware update. This step is implemented
by the eraseAppCode() function which is called inside the
firmwareUpdateScanObject() function.

The fourth step in the firmware upload protocol is to transfer
all the firmware bytes (from the selected firmware binary)
to the Gateway by sending the Gateway a packet with the
AppDownloadRequest message type (5d in hex). The App-
DownloadRequest packets contain two important components
in its payload: 1.) the memory address at which the firmware
bytes in the remainder of the payload will be stored in the
memory of the selected processor, and 2.) a byte-for-byte copy
of the firmware hex stored in whichever binary was selected
for use in the firmware upload process. As expected, packets
with this message type take up almost the entire time in the
upload process since they contain the actual firmware due to
it taking 6000 plus AppDownloadRequest packets to send all
the firmware bytes to the Gateway. This step is implemented



by the downloadAppCode() function which is called inside the
firmwareUpdateScanObject() function.

The fifth step in the firmware upload protocol is to boot
up the Gateway after all of its firmware has been uploaded
by sending the Gateway a packet with the LaunchAppRequest
message type (5f in hex). In step 1, the Gateway was placed
in bootloader mode in order to complete a firmware update;
however, following the update the Gateway needs to boot back
into normal mode. In order to do so, SWIFT Tools sends this
message type to tell the Gateway to wake up (into normal
mode). This step is implemented by the launchAppCode()
function which is called inside the firmwareUpdateScanOb-
ject() function.

The sixth and final step in the firmware upload proto-
col is to start a live background scan on the devices on
SWIFT’s mesh network by sending the Gateway a packet
with the StartLiveEventsWithBackgroundScan message type
(49 in hex). The StartLiveEventsWithBackgroundScan tells the
Gateway to send status updates on all the devices on SWIFT’s
mesh network including itself. This step isn’t essential to the
firmware upload protocol (in terms of re-implementation) and
can almost be considered not a part of it, but it does allow
SWIFT Tools to make sure that the firmware update didn’t
corrupt the Gateway or the mesh network.

C. Upload Protocol Re-implementation

The team developed a module to streamline the firmware
upload process for Honeywell’s SWIFT Gateway by re-
implementing the protocol used by SWIFT Tools. The module
is made up of two useful tools for facilitating the upload
process: 1.) a command line interface (CLI) and 2.) a graphical
user interface (GUI). Both tools achieve the same end-result
and are interchangeable in terms of functionality. The tools
carry out a successful firmware update by implementing the
six steps discussed in the previous section in python. This
means that the tools engage in real meaningful communication
with the Gateway rather than attempting an easier form of
communication such as a replay attack.

The CLI tool is called firmware upload cli.py and its usage
can be seen in Fig. 7. This python script accepts up to
three firmware binaries (i.e., SLC, BU, and RF), patches
the BU and RF firmware (using the previously discussed
CRC tool), and uploads the inputted firmware to the Wireless
Gateway. The GUI tool named firmware upload ui.py is the
optional graphical user interface for the firmware upload
process as seen in Fig. 8. The GUI tool essentially uses
the firmware upload cli.py as its back-end and performs the
same upload process in a graphical manner. The only physical
requirement of utilizing these tools is that the SWIFT W-USB
must be plugged into the system on which the scripts are run.
The tool has been tested not only on Windows 10, but also on
a Raspberry Pi to confirm compatibility with Linux systems
and to demonstrate how easy it would be for a bad actor to
use a similar device.

Fig. 7. Command line interface usage

Fig. 8. Graphical user interface for uploading firmware

VI. FIRMWARE MODIFICATION

With the firmware update CRC verification bypass, a sub-
stantial modification to the firmware can be created. A ma-
licious actor can modify the firmware in such a way as to
create malware to upload to the device. The beginnings of
this can be demonstrated by modifying the RF signals that the
gateway sends to the W-USB to be processed by Honeywell’s
companion application, SWIFT Tools. By modifying the RF
signals one can demonstrate control of the device and easily
verify that the modifications came to fruition by referencing
the data displayed in SWIFT Tools.

Fig. 9. Shown is the software version, sync word, and brand being placed
into the OTA buffer in the builds_RF_message function.



Fig. 10. Shown is the information panel of the gateway in SWIFT Tools
and the results of modification of builds_RF_message. Note the serial
number and brand fields.

The function that handles the creation of the RF buffer in
memory is present at location 0x16842 hereinafter referred to
as builds_RF_message. The first if condition within the
function contains a check for a memory address 0x3C24 if
the value is not 6F which during normal execution 0x3C24
= 6F so the if condition fails and most of the code within
the function is skipped. After this if condition, the payload
for the BackgroundScanResponse message starts being
created beginning at memory address 0x4A0B with the value
0x6F being written to that address. The exact description of the
value is unknown currently. Then, the rest of the OTA (over
the air) buffer is built utilizing several memory addresses for
a total size of 238 bytes at memory address ranges 0x4A0B
through 0x4AF8. The next byte is hardcoded to be 0xEE which
is 238 in decimal. This is the length of the buffer. Next the
serial number is the next 4 bytes. The serial number is pulled
from a different location in memory. This location, 0x3C21
through 0x3C27, provides the serial number as well as node
type, brand, and hardware version. This location in memory is
written to during bootup i.e., when the processor is reset back
to address 0xCE00. During an initialization function, the flash
memory info location D (0x1800 through 0x187F) is read and
placed into the addresses 0x3c21 through 0x3c27. Other fields
are read directly from the flash memory as in the Application
build number fields which read from the info A area (memory
locations 0x1980 through 0x19FF) of flash memory [5]. The
sync word is similar in that it is read from info B area (0x1900
to 0x197F) of flash memory in an initialization function and
placed into RAM at location 0x3920 through 0x3923 9. The
constant fields that are specific to the device are found in flash
memory, the variable fields that depend on the current state of
the device are found in RAM and is read periodically by the
builds_RF_message function, and other fields are built
into the code as constants within the function. An example
of a dynamic state of the device being read in RAM is
the magnet lock status which is read from memory address
0x3743. This value is changed depending on the current
state at bootup during an initialization function and written
to at that address. Some locations are hardcoded like the
RFApplicationBuildNumber written to the buffer uti-
lizing a constant value found in the builds_RF_message
function.

Utilizing Texas Instruments,’ Code Composer, one could

change the values, utilizing the debugging functionality, at
the addresses of where the builds_RF_message reads
from in the process of building the OTA buffer 10. Modi-
fying these values yields the expected values within SWIFT
Tools, however these modifications are not persistent during
resets. This is because during a reset, the static values of
the device are pulled from flash memory which cannot be
arbitrarily written to. The other constant values within the
builds_RF_message function are trivial to change. The
bytes themselves that make up the constants can be modified
in the instruction and sent as a modified firmware update. This
can be done for more substantial code modifications as well
to get around the requirements to write to flash memory and
modify the code in the build_RF_message function to
produce any desired values that the device transmits. Further
research into firmware code modifications is still needed.

VII. CONCLUSIONS

By continuing to reverse engineer the Gateway’s SLC
firmware in Ghidra, more information has been discovered
about the gateway’s SLC protocol. In Logic Analyzer, cap-
turing SLC signals from the FACP has enabled the team to
start decoding the SLC protocol. Further, the combination of
reverse engineering the Gateway’s BU and RF firmware in
Ghidra paired with dynamic analysis of the gateway’s live
memory with a physical debugger had lead to the bypassing of
the Gateway’s MSP430 CRC verification. In turn, uploading
a custom firmware to SWIFT’s Gateway is now possible.

Future goals for research on the SWIFT system are: contin-
ued reverse engineering efforts in the gateway’s SLC binary
in order to discover more about the SLC protocol, use of
the Logic Analyzer tool to collect and decode portions of the
SLC protocol, and determining how to alter a custom Gateway
firmware to demonstrate control of the SWIFT system. With
this information, the team will be able to execute a full-fledged
attack by blocking/injecting messages in the SLC network
(e.g., prevent the a fire alarm message from reaching the
FACP) or by controlling the entire SWIFT system through
altering the gateway’s firmware (e.g., have the gateway send
out false messages to wireless devices).

REFERENCES

[1] D. Lawrence, G. Kokinda, G. Brown, J. Jeung, and C. Roberts, “Swift
wireless fire alarm pull station analysis,” May 2021.

[2] D. Lawrence, G. Kokinda, G. Brown, A. Lukman, Y. Kim, J. Smalligan,
and C. Roberts, “Swift wireless fire alarm pull station analysis,” Nov.
2021.

[3] Zynamics. BinDiff. [Online]. Available: https://www.zynamics.com/
bindiff.html

[4] BinExport. [Online]. Available: https://github.com/google/binexport/
tree/main/java

[5] Texas Instruments. MSP430x5xx and MSP430x6xx Family User’s
Guide. [Online]. Available: https://www.ti.com/lit/ug/slau208q/slau208q.
pdf

[6] ——. MSP430F543xA, MSP430F541xA Mixed-Signal Micro-
controllers. [Online]. Available: https://www.ti.com/lit/ds/symlink/
msp430f5419a.pdf?ts=1645687841030

[7] S. Mahoney. A guide to fire alarm basics – initiation.
[Online]. Available: https://www.nfpa.org/News-and-Research/
Publications-and-media/Blogs-Landing-Page/NFPA-Today/Blog-Posts/
2021/04/14/A-Guide-to-Fire-Alarm-Basics-Initiation?icid=W483



[8] D. Krantz, Make It Work - Addressable Signaling Line Circuits. Douglas
Krantz, 2021.

[9] Notifier SLC Wiring Manual, Honeywell, 2011.
[10] SWIFT® Smart Wireless Integrated Fire Technology Manual, Honey-

well, 2020.
[11] E. Bystrak and A. Berezowski, “Enhanced group addressing system,”

U.S. Patent 5 539 389, Jul. 23, 1996.


