Wyze Camera Report

Antonia Nunley, Chris Reid, David Wolfson, Joseph Lucas, Makiyah Dee, Kyser Montalvo
Embedded System Cyber Security VIP
Georgia Institute of Technology
Atlanta, GA

Abstract— This is the final paper for the Wyze research team
at the Georgia Institute of Technology’s vertically integrated
project on embedded systems and cyber security. This document
gives a brief introduction of the camera and its characteristics,
followed by information about known vulnerabilities, and the
firmware of the camera, dongle, and contact sensor. The goal
of the research this semester is to look into the RF protocol
used by the Wyze camera and determine characteristics about
the transfer of packets.

I. INTRODUCTION

The Wyze Camera V2 is an Internet of Things (IoT)
Device. One of its main functions is serving as a security
camera, providing surveillance of the locations the camera
and contact sensors are placed. Mobile applications allow
users to maintain the status of the surroundings their devices
are in. Their smartphone application (Wyze) is available on
and compatible with Android, iOS, and Google Assistant
devices.

Recently, there has been a major increase in the use of
wireless cameras, cloud access, and mobile applications [1].
This has resulted in a need for the security of these devices to
be enhanced. As the number of these devices available to the
public increases, so does the number of individuals wanting
to conduct malicious attacks [2]. Enhancing security on IoT
devices is very expensive for companies that produce them,
and some decide to continue producing the original prod-
uct without making the necessary changes to the devices’
security[3].

II. FUNCTIONAL DESCRIPTIONS

Motion Sensor

Sensor Bridge | RF Communication

\ Contact Sensor

Wyze Camera UsB

Wi-Fi
Cloud
Servers

Wyze
Application

Fig. 1.

Overview of System Communications

The Wyze IP Camera V2 setup, as shown in Figure 1,
consists of mainly four parts: the motion and contacts sen-

sors, the sensor bridge, the camera and the Wyze application.
The sensors communicate with the sensor bridge through
radio frequency comunication (RF). The sensor bridge sends
that data to the camera via a USB connection. The camera
communicates through Wi-Fi with the Wyze cloud servers,
which sends data to the Wyze application. The sensor bridge
can communicate with up to 100 sensors[4].

A. Mainboard

The main Wyze Camera has 3 printed circuit boards (PCB)
sandwiched together. The main PCB with the SoC (System
on a Chip) (Figure 2), the microSD board (Figure 3), and
a sensor board (Figure 4) are all contained inside the main
camera.

Fig. 2. PCB of the Main Board
Label Color Red Green Light Blue Dark Blue
Component T20 SoC | Flash Mem | Open Serial Port | WiFi Board
TABLE I

COMPONENTS FOR MAIN BOARD PCB

The PCB shown in Figure 2 is one of the circuit boards
inside the Wyze camera. The board runs on a T20 processor
[5] that uses the MIPS (Million Instructions per Second)
Instruction Set Architecture. This is the main board and
it also contains flash memory, Wi-Fi, and serial access as
shown in the figure.

45
-
=7
T
g
L
&
=
(v
(=]
T
=

-——
-
-
-——
——

-
pr—
-
-—

Fig. 3. microSD PCB for the Main Board with motor driver in red

T L

Fig. 6. Back of Sensor Bridge PCB with WCH CH554T chip highlighted
in green

The main camera has another PCB that provides an SD
card slot as well as a motor driver to move the camera. This
is shown in Figure 3.

C. Motion Sensor and Contact Sensor

The contact and motion sensors communicate with the
sensor bridge wirelessly. Both sensors are controlled by a
CC1310 micro controller. The contact sensor has a magnetic
switch, which tells the micro controller when contact is made
and the motion sensor uses a PIR (passive infrared) motion
sensor.

Fig. 4. sensor board with no lens

B. Sensor Bridge

IIEN

The sensor bridge connects the camera’s sensors (motion
and contact sensor) to the main camera. The sensor runs on Fig. 7. Contact Sensor PCB
the CC1310 micro controller and has an antenna for commu-
nicating wirelessly with the contact and motion sensors. The
sensor bridge connects to the main camera via USB-A. The

: Label Color Red Brown Green
?}?argsaéso has a WCtH CI[—SSLI'T chip on the back to control Component Antenna | CC1310 | Magnetic Switch
(] communication.

TABLE 11
COMPONENTS FOR THE CONTACT SENSOR

Fig. 5. Front of Sensor Bridge PCB with CC1310 highlighted in Orange Fig. 8. Motion Sensor PCB

Label Color Blue Red Green
Component PIR Motion Sensor | CC1310 | Antenna
TABLE III

COMPONENTS FOR THE MOTION SENSOR

D. CC1310 Micro controller

RF core

." ADC
/ \ ¥\l
Digital PLL
DSP Modem

Main CPU:

ARM®
Cortex®-M3

ARM®
Cortex®-M0

Sensor Controller

Sensor Controller
Engine

2-KB SRAM

Fig. 9. CC1310 functional block diagram

The Wyze Camera uses a CC1310 TI Simplelink Wireless
MCU as the main chip on the sensor bridge as well as the
contact and motion sensors. The focus of our work this
semester was to focus on this processor, specifically the
RF core and its use. This is the radio peripheral of the
CC1310 which can be programmed to handle multiple proto-
col standards.[7] We focused on the wireless communication
protocol between the sensor bridge along with the contact
and motion sensors. This processor uses a 20KB single-cycle
on-chip SRAM with full retention in all power modes, except
shutdown [8]. This type of SRAM is useful to share and store
information between multiple parts of the chip.

Data from the SRAM can be transferred with direct
memory access (DMA) [8]. Looking into a capture of the
SRAM it is expected that there will be pieces of information
such as packets and other volatile structures. These structures
could be encrypted or encoded by the CC1310. Being able
to understand the encryption protocols of these packets is
one the goals of this semester. Other goals of the semester
in reference to the CC1310 involve reverse engineering the
firmware in Ghidra, a national security agency provided soft-
ware, to define structures and variables useful to understand
this protocol.

Not much is know about the RF Core of the CC1310;
however, sections V and VI go further in depth about what
was discovered about the RF Core from the team’s research.

III. EXISTING VULNERABILITIES

To date, there are several very significant vulnerabilities
of the Wyze Camera system that can be exploited to leak
sensitive information. These vulnerabilities are subject to
several different types of attacks, but the most significant
attack to the Wyze Camera is a replay attack. Additionally,
the Wyze camera’s firmware is not signed, allowing the
firmware to be modified.

A. Replay Attacks

Replay attacks are a very significant vulnerability that
compromises the security of the Wyze Camera. Replay
attacks are defined to be network-based attacks where the
attacker delays, replays, or repeats data transmission between
the user and the application [9]. Replay attacks explain
that messages are not being authenticated well. A common
technique for preventing replay attacks is to use a nonce
(number used once) [10]. Since we can do replay attacks,
we know that the Wyze Over-the-Air (OTA) protocol does
not implement nonces.

Using captured packets from a contact and motion sensor,
an USRP N210 was used to replay the recorded packets back
to the dongle. The dongle successfully received the packets,
as verified by the chosen input being displayed in the Wyze
app. The first packet associated with an alert contains a 4-hex
character value, that increments upwards each alert and resets
when a sensor is powered off. When captured packets were
replayed, this 4-character field returned to the value that was
captured. It is unknown what these 4-characters represent,
but given their incrementing when an event happens it is
possible, they are some kind of sequence counter. Recorded
packets are able to be sent in any order, as long as the event
types alternate, and will be processed successfully by the
dongle.

Expanding on the replay attack, URH was used to mod-
ulate packets so that arbitrary changes could be made. The
settings used to successfully modulate packets can be seen
in Figure 10 below:

Sample Rate: ™M
Modulation Type: FSK

Bits per Symbol: 1
Frequencies in Hz: -19K/19K

Encoding:

Carrier Frequency: 906.7MHz
Carrier Phase: 0°
Symbol Length: 100

Fig. 10. Setting used to modulate packets

Using URH, arbitrary packets were able to be sent to
the dongle. Using a recorded contact sensor open alert,
nibbles and then bytes were zero’d out sequentially and then
transmitted with a contact sensor close alert in between.

B. Unsigned Firmware

In embedded systems, authors of the firmware may sign
that firmware. This is a cybersecurity technique used to pre-
vent malicious or corrupted firmware to be flashed onto the

device. Signing a firmware entails generating a cryptographic
hash value, signing (encrypting) it with the private key of a
private/public key pair, and attaching it to the firmware[11].
The firmware on the devices of the Wyze system are not
signed, allowing unauthorized firmware to be flashed onto
the devices [12].

IV. SENSOR FIRMWARE

The sensors and sensor bridge communicate through radio
frequency (RF) with OTA packets. The packets received from
the sensors are decoded in the binary of the sensor bridge.
Depending on the command or type of packet being sent,
they can also be serial packets, which contain information
about the camera and state of the sensors and other devices
in the Wyze network. We were able to obtain log files
for different communication scenarios between the devices.
Looking through the RTSP (real time streaming protocol)
log files, there are certain parts of the communication that
directly matches with the packet information.

A. Packet Decomposition

Fig. 11. Ghidra Serial Packet Struct Header

The serial packets which are sent between the sensors and
the sensor bridge differ in length dependent on the contents
and command type of the packet being sent. They will range
between a length of 7 bytes to a length of 64 bytes. Packet
interpretation from the sensor bridge begins by checking the
two magic bytes and the command byte: The magic bytes are
the first two indices of the package, the "mode" byte is the
third byte of the packet. The length byte is the fourth, and
following this is the command byte. The remainder of the
packet length is the payload. The Wyze camera system uses
variable length packets to communicate between the devices,
however the first 5 sections of the payload are consistent
and present in all packages. [13] Finding any information on
the serial packet protocol, could help us in determining the
RF protocol used, since this communication is between the
camera and dongle.

o Magic bytes: [55] [aa] : is a packet received from
the dongle. Flipping the order, [aa] [55] refers to a
packet from the camera sent to the dongle. These
messages include commands which give information on
the system.

1) Finding the length of the packet
— The length byte of the packet is interpreted as
a decimal value (see Figure 12 below). And
is located 3 bytes from the first magic byte
(the 4th byte). The full length of the packet is
this value + 4. It can be inferred that this + 4
accounts for the 4 bytes previous to the length
index of the packet. Meaning, this byte actually

designates the number of remaining bytes in the
packet length.

Knowing the length of each packet is neces-
sary to differentiate between two consecutive
packets. The team confirmed that the Wyze sys-
tem communicates using packets with variable
length payloads. Therefore, without the packet
length, it would be very difficult to tell where
one packet ended and another packet began,
since the amount of bytes in each packet can

vary.

/% D32 da X/
if ((package->magic[readIndex] == 0x55) && (package->magic[readIndex + 1] == @xaa)) {
if ((package->magic[readIndex + 4] == @xff) || (package->magic[readIndex + 4] == 0)) {
readIndex = readIndex + 7;
if (packagelLen == readIndex) {
*param_3 = 0;
}
}
else {
packagelen = package->magic[readIndex + 3] + 4;
if ((int)(bufLen - readIndex) < (int)packageLen) {
_0041e2b8_log("dongle",4,"dongle_usb.c","handle_data_stream",0x498,
“packageLen :%d > buflLen:%d - readIndex:%d");
*param_3 = buflLen - readIndex;
return 1;

Fig. 12. Ghidra interpretation of packet length in decimal

2) Finding the sub_mac value of the camera

— If the packet is not an ACK packet, the sub_mac
value of the camera can be found in bytes
[16:23] of the packet. Like the length of the
packet, the value of these bytes is interpreted
as decimal, and their ASCII values are the
sub_mac value.

3) Simply acknowledging that the previous packet is
received

— This simple ACK packet is 7 bytes long.

— The type byte (3rd byte) has only two op-
tions: 0x43 or 0x53. This difference is between
synchronous (0x53) and asynchronous (0x43).
When the type is 0x43 the response packet from
the other device will immediately be sent, with
any payload information the current command
requests. If the type is 0x53, along with an ACK
packet, the responding device will send packets
corresponding to the command byte. [13]

B. JLinkExe

The JLinkExe is a program to interface with the segger
J-link, which is a device that can connect to the JTAG of
a processor. Once connected to the JTAG, it is possible
to step through the instructions on the firmware of the
processor. By doing this, we will be able to look through
the Assembly Language of the processor and see which
registers are being used, how they are being used (Branching,
writing, and writing on registers), and which hexadecimal
memory addresses are being occupied. Then we can take the
hexadecimal memory address (RO = 0x2000051C) and see
what is stored at that address. In the case of this project, we
are focusing on connecting the target device (CC1310F128)

via cJTAG. We first SSH into the system, then run JLinkExe
command. While it is running, you will connect to the
CC1310F128 and type (t) for the cJTAG. Once the device
is selected and connected to, we will need to slow down
the interface speed from it’s default 4000 kHz to 100 kHz.
We do this to slow down the processor so we can read the
memory addresses.

Fig. 13. Stepping through the processor

Fig. 14. Registers being used in the processor

V. SIGNAL ANALYSIS OF THE RF PROTOCOL

This semester the focus is on reverse engineering Wyze’s
proprietary RF protocol between the contact sensors, motion
sensors and the sensor bridge. The teams must first determine
whether the OTA packets are encrypted and/or whitened.
This can be done by analyzing Over-The-Air (OTA) captures
of recordings between the sensor bridge and the sensors.

A. Packet Captures

A packet capture intercepts a data packet crossing a point
in a data network, and once captured, the packet can then be
stored and later analyzed. To capture packets going between
the dongle and sensors, an Ettus N210 SDR with a standard
vertical antenna was used. GNU Radio was used as the
software to record the packets. The GNU Radio flowgraph
used to record and the block diagram for data flow can be
seen below:

Wyze App

Traffic Recorded
o o
i
i

Wyze

USRP N210
Camera

Traffic Replayed

Fig. 15. Block Diagram showing where Packets and Logs were captured

Options
Title: Recard
Output Language: Pythan QT GUI Range
Generate Options: QT GUI 1d: gain
Default Value: 0
Start: 0 Start: 11
Stop: 50 Stop: 20M
Step: 10 Step: 100k

File Sink
File: ...Two\contact_sinkink

UHD: USRP Source
Syne: NoSync

Samp rate (Sps): 1M
=i ChO: Center Freq (Hz): 506.7M
Ch: AGC: Defaut

Cho: Gain Value: 0

ChO: Gain Type: Absclute (dE)
Cho: Antenna: RX2

Fig. 16. GNU Radio flow graph used to record packets for playback

Serial logs were captured using a direct connection to
the Wyze Camera, which outputs received packets as part
of its debug information. Alternatively, serial logs can be
directly captured using WyzeSensePy [14], a raspberry pi
and a USB connection to the dongle, which implements the
communication protocol between the dongle and camera.

B. RF Overview

Information from the contact and motion sensor is gener-
ated by their microcontrollers and modulated through Fre-
quency Shift Keying (FSK). Universal Radio Hacker (URH)
[15] an aid in analyzing OTA packets to analyze the protocol
between the camera and the dongle.

C. Sensor Over-The-Air Packet

URH can be used to get a clearer look at the OTA packets
of recordings. It depict what is actually happening during the
time between the motion and contact sensors of the camera
before the packet is received. This will allow the team to
gain a better understanding of the communication protocol.

D. Packet Contents

Not all data transmitted via over-the-air (OTA) packets
is currently known. The OTA packet is composed of a
proprietary protocol packet with a payload that contains the
application level which may consist of the: MAC, Battery,
Counter, and Event Type. We suspect OTA packets from
sensor-to-dongle contain the MAC of the sensor which is
used for identification. The sensors transmit how much
battery they have left to the dongle via the sensor bridge.
Additionally, there is a 16-bit sequence counter that incre-
ments each time there is an event (open/close, motion/no
motion). This sequence counter resets to 0 every time
the sensor is powered down. Finally, the type of event is
transmitted (open/close, motion/no motion). Given that we
know that the packets are largely the same, with variation
for battery/MAC/counter/event type, it is very likely that the
packets are encrypted, whitened, or both. The TI SDK has
been a good source for understanding the physical structure
of the packets. We have an idea that Wyze is using advanced
TX/RX packets from TI. The diagram below provides more
information:

cmd_prop_rx vs cmd_prop_rx_adv

The main differences between the packet format supported by the CMD_PROP_RX and the CMD_PROP_RX_ADV commands
are the Header field and the Address field

0-255bytes oor16bts

e syncWord
1632 bytes

- = &7

e bye

ade. oo ¢
otwsbyes by oortsbas

Case 2: 3 byte header, length information not directly after sync word.

With the advanced RX command, it is possible to receive packets with a length byte that is longer than 8 bits, and the length
information does not have to be located at the start of the header. Consider the packet shown in the figure below being
transmitted on the air, where the header is 3 bytes, and the length byte is the two last bytes of the header:

I Header Paviond

Preamble Sync Word 24 bits ayloa CRC
Length

Preamble Sync Word X 0X0005 datal, data2, data3, data4, dataS CRC

To be able to receive this packet, and interpret the length correctly, the following must be set:

e _cadPropRokdv.ndrCont.nuskdrBits - xis;
RF_cmdPropRxAdv . hdrConf.numLenBits = 0x10;
Fig. 17. RX information

E. Communication Protocol

When an event is detected, the sensor transmits a packet
to the dongle. After the dongle has received the packet, the
dongle replies with an “ACK” communication that indicates
it received the event alert from the sensor. The dongle keeps
state of sensors in memory. For a contact sensor, sending two
“open” event alerts consecutively, will result in the second
message being considered an error, and not another event.
This state keeping seems only to be related to the state the
sensor is in (open/close, motion/no/motion) and not related
to the sequence counter embedded in the message.

F. Recordings

The packets were transmitted through a frequency of
906.7MHz with a modulation type of FSK. Using URH the
packets could be sent to the dongle and from the dongle to
the host. These recordings were taken from three states of
the motion sensor: motion, connect, delete.

G. Motion Sensor

An analysis of the motion sensor captures was done using
the URH tools along with an analysis of the log files using
a parser. The goal of this was to to gain more insight about
the data being sent in the OTA packets.

H. OTA Protocol

The focus of our research was to answer whether the
OTA packets were whitened and/or encrypted. With this
information, one could be able to manipulate and spoof
messages to the Wyze Camera. To begin uncovering the
mystery of the OTA packets, the team reviewed the past
teams’ work, which included an outline on how to reach
the answer:

Future work

This replay attack can be expanded on to send arbitrary packets to the dongle. Some work has already been done in
Universal Radio Hacker to support this.

Using URH's "Generate" functionality, signals can be modulated and successfully received by the dongle.

The generation parameters are below:

URH supports fuzzing profiles. On the "Generator* tab, click the load button in the top left. This will load a fuzzing profile
including the messages to modulate, modulation parameters, and pauses in between messages. This can be combined with
the serial logs from the dongle to correlate parts of the over-the-air (OTA) packet with the payload. The included fuzzing
profiles focused on trying to zero out entire nibbles/bytes and iterating through the entire OTA packet, expected to see a
change in the serial output. However, no change was observed. Note that a fuzzed OTA packet will need to alternate with a
legitimate packet of the opposite event type (openjclose or motionjno motion) to change the dongle state so it will accept
the fuzzed packet.

Fig. 18. Outline of Continuing Research in the OTA Protocol

Using URH, the team would take an old open replay attack
that was successful and edit some of the bits; the edited
replay attack was then uploaded to the diagram in GNUradio
companion to have it tested to see if a valid open replay
attack still occurred.

File Source Multiply Const

UND: USRP Sink

Fig. 19.

Edited GNU Radio Diagram

Once the flow graph was executed and WyzeSensePy was
running, the edited open and the successful close replay
attacks were tested. The attacks were tested to see if they
were valid by alternating between the open and close sliders
by changing their value from 0 to 1. We expected to see
results like the ones in the Figure 20 below:

0x5319 | b'00 timestamp: 178efcad8S5 unknown: a20 mac: 0000000000000001 signal: la batter
[2021-04-20 10:59:11] [IStateEvent: sensor_type=switch, state=open, battery=95, signal=54

0x5319 | b'000 timestamp: 178efcadace unknown: a20 mac: 0000000000000001 signal: la batter
[2021-04-20 10:59:12] [1StateEvent: sensor_type=switch, state=close, battery=95, signal=54

0x5319 | b'000 timestamp: 178efcaddal unknown: a20 mac: 0000000000000001 signal: la batter
[2021-04-20 10:59:12] [IStateEvent: sensor_type=switch, state=open, battery=95, signal=s1

0x5319 | b'00 timestamp: 178efcaedac unknown: a20 mac:
[2021-04-20 10:59:13] [sensor_type=swit

0000000000000001 signal: la batter
h, state=close, battery=9s, signal=sd

0x5319 | b'000 timestamp: 178efcae351 unknown: a20 mac: 0000000000000001 signal: la batter
[2021-04-20 10:59:14] [1StateEvent: sensor_type=switch, state=open, battery=95, signal=51

0x5319 | b'000 timestamp: 178efcae6ad unknown: a20 mac: 0000000000000001 signal: la batter
[2021-04-20 10:59:15] [1StateEvent: sensor_type=switch, state=close, battery=95, signal=53

Fig. 20. Results of Successful Open and Closed Replay Attacks

If the experiment was a success, meaning the edited open
replay attack worked, then we would gain insight on whether
or not the packets were whitened and/or encrypted. However,
the results of the experiment were inconclusive because the
edited open replay attack was not properly executed. There
are multiple reasons why the edited message did not go
through. The cyclic redundancy check (CRC) [16] could have
been incorrect, or possibly the edited piece of the packet was
indistinguishable and couldn’t be interpreted (unencrypted or
encrypted). One way to overcome this setback would be to
correctly recalculate the CRC after bits are edited and/or to
find the sync word.

VI. REVERSE ENGINEERING THE RF PROTOCOL

A. Ghidra

The primary tool used to reverse engineer the RF protocol
is Ghidra. Ghidra is a software reverse engineering (SRE)
suite of tools developed by NSA’s Research Directorate
in support of the Cybersecurity mission[17]. The firmware
of the Wyze camera is loaded into Ghidra, and Ghidra
disassembles the program allowing users to reverse engineer
the program.

A helpful tool in the reverse engineering is the SVD loader.
SVD stands for System View Description and is a file that
contains information like the memory map and names of
memory addresses. This file can be loaded into Ghidra with
the SVD Loader and Ghidra will automatically create names
in the memory map to make reverse engineering easier.

As described above in section IV, the packets used for
communication contain a command number which describe
to the receiving device what action is required of it. This
command number was reverse engineered to determine what
type of packets the Wyze system is using. A simple scalar
search was conducted in the binary for the command number
for transmitting and receiving standard packets (command
number 0x3801 and 0x3802) and for transmitting and receiv-
ing advanced packets (0x3803 and 0x3804). These command
numbers were taken from the SDK for the CC1310 MCU and
also in the technical manual for the MCU. This technique
was used because it was a simple and quick way to attempt
to determine what kind of packets the Wyze system uses. The
results of the search were that only the command numbers for
the advanced packets were found in the binary file. This lead
the team to believe that the Wyze system is using advanced
packets for wireless communication. Advanced packets have
the option to repeat the preamble and have an arbitrary
amount of memory allocated for the payload.

Additionally, while conducting this search, the team found
what seems to be an important SRAM pointer. The pointer
was found in a function for receiving advanced packets. The
pointer points to the location 0x200022c0 in the SRAM. In
the function, the value stored in this location is compared
to several hex values which represent different command
numbers. This comparison is used to determine the subse-
quent actions of the microcontroller. This could mean that
the command number is being stored at this location in the
SRAM, which could be a clue to the team for where to start
looking for the packet structures in the SRAM.

This location has also shown up in another area of the
team’s research. A snapshot of the contents of the SRAM
was taken with the contact sensor pushed on and off, and a
"diff" was performed of those two files. This exact memory
location showed up in the output of the "diff", as shown in
Figure 21 below. The lines of interest are the lines beginning
with 2270. This represents the memory location 0x200022c0
with an offset of 0x20000050. The contents of what is being
stored in this memory are not yet understood, but should be
a focus of future research.

Fig. 21.

Contents in location 0x200022c0

Another focus of this semester was to continue reverse
engineering the decompiled C code to find functions relating
to the RF protocol, labeling any new data structures, scalars,
and other relevant methods to RF and the data queue. To do
this, the TI CC1310 technical manual and SDK are used.

B. Texas Instruments CCI13x0, CC26x0 Software Develop-
ment Kit (SDK)

In order to begin reverse engineering the disassembled
code in Ghidra, the team studied TI's CC13x0, CC26x0
SDK. The SDK allows the team to become familiar with the
possible methods, structures, and constants that can be found
in memory and their uses. Some methods available in te SDK
have already been discovered in the Ghidra disassembly. The
SDK also comes with example implementations of different
protocols and procedures that can be implemented through
the API provided with the SDK. Specifically, there are
example implementations of RF protocol including packet
transmission and receiving. These examples include a main
thread, and setup functions to show exactly how the SDK
could be used in different situations.

During our research several files in the SDK were in-
vestigated. One file that is focused on is the example file
rfPacketRx.c. Not only does this file include a mainThread
containing the setup of the RF protocol, it also demonstrates
the use of a callback() function. This is believed to be the
primary handler of packet intake through the data queue.

Another file of focus is RFCC26X2multiMode.c driver.
Although this driver file would seem to only apply to
CC26x2 MCU’s, the team believes that the same code would
also be used for the CC1310 MCU. This file contains
many important functions pertaining to the RF core, but
the function the team focused on is RF_init(). This function
handles initializing the RF driver. The team believed this
function could help understand where the data for the packets
is coming from in the SRAM. There is a function labeled
RF_init_maybe() in Ghidra, which is labeled by students of
previous semesters.

While exploring these two functions, the team realized
that the RF_init_maybe() function cannot be the RF_init()
function from the SDK. One of the reasons for this con-
clusion is that the function in Ghidra has four parameters
in the function header, while the function in the SDK has
no parameters in the header. Additionally, the RF_init()
function in the SDK is called by several other functions to
initialize the driver, while the function in Ghidra is not called
anywhere. To confirm this, a search of the memory location
of the function is conducted over the entire binary file,
but nothing is found. Therefore, the team believes that the
RF_init_maybe() in Ghidra is mislabeled and is in fact not
the RF_init() function. Finding the actual RF_init() function
in the binary file should be a focus of future research.

C. RF Data Queue

The CC1310 uses a data queue to maintain packets which
are transferred over the air. Data queues are used for trans-
ferring packets from the RF core to the main CPU and vice
versa [18]. Since this data queue is volatile it can be inferred
the packets present in it will be in the 20kB shared S-RAM
on the CC1310 chip. According to [18] there are four types
of data queue entries:

1) Single Packet Entry: the entry only contains one
packet, and the payload(data) is after the header

2) Multi Packet Entry: the entry can contain more than
one packet, with payload (data) after the header

3) Pointer Entry: the entry contains only one packet, with
payload at another location in memory

4) Partial Entry: stores packets with unknown or unlim-
ited length with payload after the header

Currently it is unknown how the Wyze camera uses the data
queue. Of the methods we have discovered in Ghidra, none
seem to reference any use of a data queue. In the future,
compiling the example code from the SDK and dumping this
into Ghidra will allow us to compare the Wyze decompilation
and the example code using the Linux executable function
"diff". The "diff" function compares two different files line
by line and displays the differences. This will be difficult
to setup, as the decompiled code in Ghidra may not line up
perfectly with the SDK code, but once the files are setup
correctly, it could be extremely useful. Comparing the two
files will make it easier to see similarities, and possibly
discover locations of packet protocols.

The main Thread in rfPacketRx.c can be made into a block
diagram or flow chart, to see the order of successive setup
and method calls. Creating this block diagram will provide
insight into the ordering and flow of the code we find in
Ghidra.

Figure 22 shows the block diagram of rfPacketRx.c. The
calls to external methods are mostly to RF command handler
functions. Most follow the RF_*Cmd naming convention
and revolve around maintaining the state of the RF queue,
and completing any commands that are sent. Comments
in the SDK around these functions refer to a "pool" of
commands. It can be assumed this pool is referring to the
data queue. Being able to find these basic command handlers
in ghidra will point us in the correct direction for finding
implementations of data queue usage in the Wyze camera.

D. The Callback Function

In this example implementation RfPacketRx.c, the only
other method to the main thread is a method called callback.
This method seems to do all of the handling for the data
portion of the packet. The method uses a memcpy() to
copy the payload of the packet into memory. In this simple
example, much isn’t done with the packet, but it can be
assumed that if the Wyze camera implements something
similar, this is where decrypting and handling of packets
will occur.

wtf (hardware)

e (sdataQueue, rxDataEntryBuffer,
er), NUM_DATA_ENTRIES,
[MAX_LENGTH + NUM_APPENDED_BYTES))

retums O i it was able to allocate space for the queue

MAX_LENGTH;
tok = 1;

thok = 1

l

RF_runCnd(rfHandle, («)6RF_cndPropRx

NULL, 0);

IRF_Prior
IRF_EventRxEn

cmdstatus = ((volatile *)GRF_cndPropRx)->status;

switch(cndstatus)

Fig. 22. rfPacketrx.c block diagram

E. The Sync Word

A pivotal part of reverse engineering the OTA protocol
depends on finding the sync word that is used. The sync
word indicates where actual data in OTA packets begin. It
is indicated in the Proprietary RF User’s Guide [19] that the
default sync word is 32 bits and has the value 0x930B51DE.
Using TT’s SmartRF studio along with a CC1310 Launchpad,
we can configure the launchpad to receive packets from other
CC1310 devices, such as the dongle and sensors. However,
when the sync word was configured to be the default sync
word, no packets were received. Also note that the default
sync word value could not be found in any DAT structures
in the binary file in Ghidra (0.0.0.33.bin), further supporting
the notion that the default sync word is not being used by
Wyze. An example window for Smart RF Studio 7 can be
seen in Figure 23. Due to the fact that the sync word has a
variable size (8-32 bits), it was very hard to try to determine
the exact sync word after finding that the default value was
not being used.

One way we tried to determine the sync word was by using
auto correlation. This method is mentioned in the cc13x0
Proprietary RF User’s Guide [19] when describing the format
of packets. The guide states that the sync word should be (1)
long enough to be unique and (2) the auto-correlation of the
sync word must have one high peak with flat side lobes.
This can be seen in Figure 24 for the default sync word.

m XDS-L200003B - CC1310 - Device Control Panel - X
File Settings View Evaluation Board Help

Packet TX ~ b Star B siop | [] Command View [] RF Parameters

Target Configuration
RF Design Based On: LAUNCHXL-CC1310 - @ DCOCEnable [Caparray Tuning @ Customize.

Typical Settings

= Settings for 779 - 930 MHz band
50 kbps, 2-GFSK, 25 kHz deviation
50 kbps, 2-GFSK, 25 kHz deviation, [EEE 802 15 4g MR-FSK PHY mode
1.2 kbps, 2-GFSK, 6.1 kHz deviation
2.4 kbps, 2-GFSK, 5.1 kHz deviation
200 kbps, 2-GFSK, 70 kHz deviation

00 khne 2GR 108 lH deiati

RF Parameters @

Symbol Rate Deviation
368.00000 | MHz {50.00000 | kBaud [25.000 | kHz
RX Filter BW!

98 v kHz 14 ~| dBm No whitening

Continuous T | Continuous RX | Packet TX | Packet RX

Packet Count: | 100 |[] Infinite

Length Config: | Variable +

Preamble || Sync word (L;:f:h Packet Data CRC
[01010101] |[93][0b (51 [de | [SN[84 13 ed 8 7e a df 49 5d d6 3d c0 85 1d 2e fc e <0 1=
Preamble Count: |4 Bytes ~ | Sync Word Length: 32Bits ~ | [] Address
Preamble Mode: | Send 0 as the first preamble bit
Add Seq. Number
(®) Random |84 13 ed f3 Te aa df 49 5 d6 3d 0 85 fd 2e fc o5 e0
O ron i,
™
) Hex
Sent Packets: 0
Frequency 86800000 Mz
Output Power: 14 dBm
[] Advanced Start Stop
CC1310, Rev B (2.1), XDS12000038 X0St0 Radio State: NA

Fig. 23. Window showing RF configuration using Smart RF studio 7

Using the packets captured in Universal Radio Hacker, we = Wyze developers used Smart RF Studio to configure the RF
tried to use auto correlation over every window of 32 bits protocol of their devices because a key feature of Smart
in order to find possible sync words. This was repeated for =~ RF Studio is that it allows a user to export a settings file
possible sync words of size 24 and 16 bits. Unfortunately, after configuring the necessary RF parameters (preamble,
no auto correlation resulted in a single high peak with flat sync word, frequency, etc.). This settings file can be used in
side lobes. C/C++ code to establish the RF settings in code. This takes
the burden off the developer to manually set each variable in

order to make the RF protocol work the way they intend for

& T T - T - - it to work. It is also important to determine the sync word
that is being used because the sync word is needed in order

* to unwhiten packets in Universal Radio Hacker.

Py -

ol | The Universal Radio Hacker software was also used when
trying to determine the sync word of the OTA packets.

15 1 Note that the preamble in Smart RF studio is either set to
repeating OxAA or repeating 0x55. And then the sync word

or 1 should arrive after the preamble, and after the sync word is

sl | either the length of the packet or the address of where the
packet is going (1 byte/8 bits). This is the pattern that we

Or 1 were looking for in the captured packets being used in the

sl i replay attack. However, we could not concretely identify any

packets that followed this format of preamble, sync word (8-
-0, - - : L 1 L 32 bits), address (optional), and length. This could be for a
multitude of reasons. It is possible that everything after the
sync word is whitened, therefore it would be hard to identify
the address bytes and the length bytes. It is also possible that
the parameters used to view the bytes in Universal Radio

However, it is fair to assume that the developers used Hacker are wrong even though the captured packet itself is
Smart RF studio — along with other TI Software such as valid. Taking into consideration all these possibilities, the
Code Composer Studio (CCStudio) and Flash Programmer road to finding the sync word is going to be difficult if we
— to configure their CC1310 chips. We can assume that the can not find an easier way to deduce it.

Fig. 24. Auto correlation of default sync word 0x930B51DE

F. Memory Map

A memory map gives a detailed look at the memory
structure of a chip. This semester’s focus was the CC1310
chip on the camera dongle. The memory map of this chip
includes RAM, SRAM, RFCRAM, CCFG, FCFGI1, and
many peripherals, some of which is shown in Figure 25.[8]

Base Address Module Module Name
0x0000 0000 FLASHMEM On-Chip Flash
0x2000 0000 SRAM Low-Leakage RAM
0x2100 0000 RFC_RAM RF Core RAM
0x4000 0000 sslo Synchronous Serial Interface 0
0x4000 1000 UARTO Universal Asynchronous Receiver/Transmitter 0
0x4000 2000 12Co 12C Master/Slave Serial Controller 0
0x4000 8000 ssh Synchronous Serial Interface 1
Fig. 25. Cortex M3 Memory Map

Because the system uses memory mapped I/O, which
means peripherals and instructions are accessed directly
through memory without an intervening operating system,
these memory address are heavily referenced in binary and
it is important to have them easily accessible for easy
understanding of the code. Ghidra is smart enough to use
a memory map in its decompiled code, but it cannot load in
the names of regions by itself. In order to bring this memory
map into Ghidra, the Ghidra scripting functionality must be
used. An easy way to do this is by using a System View
Description (SVD) file. An SVD file contains the descrip-
tion of Arm Cortex-M based microcontrollers, including the
memory maps[20]. Luckily, leveldown security have already
created a well documented script to load these SVD files
into Ghidra[21]. The SVD Loader parses the .svd file and
creates a memory map in Ghidra. Ghidra is smart enough to
take the memory map and translate it to the decompiled code
to give memory locations names. The SVD Loader can be
downloaded from GitHub and the corresponding cc1310.svd
file can be used with it in Ghidra[22]. Some of the loaded
memory map can be seen in Figure 26 and this corresponds
to the provided memory map from the technical manual[8].

Name ‘Start b.|End ‘Length ‘R ‘W ‘X |Vo|ati|e|

ram 00000... 0001ffff 0x20000

SRAM 20000... 20004fff 0x5000

RFCRAM 21000... 21000fff 0x1000

12CO_U... 40000... 40002fff 0x3000

SSi1 40008... 40008fff 0x1000
Fig. 26. Memory Map from Ghidra

G. SVD Loader

This semester’s research went on to improve this current
SVD Loader. The original loader would create a memory
map, but the memory regions themselves would be unini-
tialized, meaning there was no data for Ghidra to interpret.
Specifically the CCFG and FCFG1 regions would be cleared.
To create initialized memory in those regions, the original
python script needed to be changed. The old script had a
loop that went through each region/peripheral, and loaded
them into Ghidra with a function that created uninitialized
memory. The java API that is used in python scripting also
provides functions to create initialized memory regions. To

create initialized memory, you need to provide Ghidra with
FileBytes which can be created with a create FileBytes
function. FileBytes are created with memory pulled from
the chip. To pull memory from the CC1310 chip, wires
were soldered onto the test pads of the PCB for an antenna
to read the device with a utility called Uniflash. Uniflash
allows a user to quickly browse a target devices memory
and export the binary of a selected memory region[23]. The
JTAG conntection was also utilized to export the SRAM.
Memory files for the CCFG and FCFG1 regions were pulled
and FileBytes were created for these regions. CCFG is
the customer configuration of the device and FCFGI1 is
the factory configuration of the device. These regions may
contain imortant data values that give a better picture of how
the device is used. The updated script initializes the CCFG
and FCFG1 regions based on their names.

if r.name == "FCFG1":

t = currentProgram.memory.createInitializedBlock(r.
elif r.name == "CCFG":

t = currentProgram.memory.createInitializedBlock(r.
else:

t = currentProgram.memory.createUninitializedBlock(

Fig. 27. Updated Script Loop Condition

When the loop comes to one of these names it will use the
provided FileBytes to initialize the region. To use the current
script, you must provide it with the same .svd file, but now
the .bin files needed to initialize memory. The initialized
memory is seen in Figure 28.

500010dc 3f do 9e f7 uint
500010e0 3f do df f7 uint
500010e4 3f 40 fo f7 uint
500010e8 3f 70 fo f7 uint
500010ec 3f 60 cf 7 uint
5e0010fe 3f 40 fo f7 uint
5000104 4d @1 da ff uint
50001018 4d 01 d2 ff uint
500010fc 4d 01 da ff uint
50001100 4d @1 d2 ff uint
50001104 4d 01 da ff uint
50001108 4d 01 da ff uint

F79ED@3Fh
F7DFD@3Fh
F7F@403Fh
F7F@703Fh
F7CF603Fh
F7F@403Fh
FFDA@14Dh
FFD2014Dh
FFDA@14Dh
FFD2014Dh
FFDA@14Dh
FFDA@14Dh

CONFIG_SYNTH... Internal. Only to ...
CONFIG_SYNTH... Internal. Only to ...
CONFIG_SYNTH... Internal. Only to ...
CONFIG_SYNTH... Internal. Only to ...
CONFIG_SYNTH... Internal. Only to ...
CONFIG_SYNTH... Internal. Only to ...
CONFIG_MISC_... Internal. Only to ...
CONFIG_MISC_... Internal. Only to ...
CONFIG_MISC_... Internal. Only to ...
CONFIG_MISC_... Internal. Only to ...
CONFIG_MISC_... Internal. Only to ...
CONFIG_MISC_... Internal. Only to ...

XREF[1]:
XREF[1]:
XREF[1]:
XREF[1]:

Fig. 28. Initialized Memory in Ghidra from Script

This initialized memory shows the names given from the
.svd file as well as the actual data values associated with
them. These data fields are defined in the CC13x0 technical
manual.[8] One of these values is the USER ID value as seen
in Figure 29.

Figure 9-144. USER_ID Register

31 3 20 28 27 2 2 2 2 2 21 2 19 18 17 16
PG_REV [VER RESERVED [SEQUENCE PKG
RX RX RX RX RX
BB B B W 9 8 7 6 5 4 3 2 1 [
PROTOCOL | RESERVED
R-X R-X
Fig. 29. USER ID field from Technical Manual

The technical manual defines this data structure to have
bits relating to the supported protocols. Specifically bits 12-
15. As seen in Figure 29, these bits will show what protocol
the Wyze camera uses.

1512 PROTOCOL R X Protocols supported.

0x1: BLE
0x2: RF4CE

0x4: Zigbee/6lowpan

0x8: Proprietary

More than one protocol can be supported on same device - values
above are then combined.

Default value differs depending on partnumber.

Fig. 30. Protocol Bits

When examining this data value in Ghidra, we can see
that the bit desired is 0x8, as seen in Figure 30. This means
that the protocol used by the Wyze camera is proprietary, as
shown above in Figure 30. Therefore, more research will be
required to discover how the protocol works. This knowledge
can be applied to more data in the CCFG and FCFG1 regions
and more information can be discovered on how the camera
works internally.

50001293 ff ?? FFh
50001294 00 80 01 20 uint 20018000h

T1eLl0_Uxsve
field_0x293
USER_ID

50001298 00 ?7? 00h field_0x298

Fig. 31. USER ID data value in Ghidra

VII. CONCLUSIONS
A. Future Goals

More research into the RF protocol used is necessary.
In the future, continuing to look for and locate methods
and constants related to the RF data queue in the Ghidra
disassembly will help gain a much better understanding of
the exact protocol used, Additionally, further investigation
into the SRAM pointer described in section VI may be able
to help locate RF packets in the SRAM.

The continuation of research regarding the OTA protocol
should focus on recalculating the CRC and finding the
sync word for the packets. Once the CRC and sync word
are correct, the edit message can be retested to see if a
valid replay attack occurs. If the message goes through
successfully, information about whether or not the packets
are whitened and/or encrypted should become clearer to the
team. The team will then be one step closer to being able to
arbitrarily spoof messages to the Wyze Camera.

REFERENCES

[11 S. Sinha, “State of iot 2021: Number of connected iot devices growing
9% to 12.3 billion globally, cellular iot now surpassing 2 billion.”
https://iot-analytics.com/number-connected-iot-devices/.

[2] “Tot security needed now more than ever.”
https://cisomag.eccouncil.org/iot-security-needed-now-more-than-
ever/.

[3] “why-do-iot-companies-keep-building-devices-with-huge-security-
flaws.” https://hbr.org/2017/04/why-do-iot-companies-keep-building-
devices-with-huge-security-flaws.

[4] “Wyze sensor limit.” https://support.wyze.com/hc/en-
us/articles/360030677072-Is-there-a-limit-to-the-number-of-sensors-1-
can-connect-to-a-Bridge/.

[5] B. Dipert, “Teardown: High-quality and inexpensive security camera.”
https://www.edn.com/teardown-high-quality-and-inexpensive-security-
camera/2/.

[6] “8-bit cost-effective enhanced usb microcontroller ch554.” http://wch-
ic.com/products/CHS554.html.

[7] “Rf core — simplelinktm cc13x2 / cc26x2 sdk proprietary rf user’s
guide 2.80.0 documentation.”

[8] T. Instruments, “Cc13x0, cc26x0 simplelink™ wireless mcu technical
reference manual,” Texas Instruments, Feb 2015.

[9]

[10]

(11]
[12]

[13]

[14]
[15]

[16]
[17]
[18]
[19]
[20]

[21]
[22]

[23]

A. Ohri, “How to prevent a replay attack in 2021
https://www.jigsawacademy.com/blogs/cyber-security/replay-attack/,
Mar 2021.

1. Docs, “Nonce, a randomly generated token.”
https://www.ibm.com/docs/en/was-nd/8.5.5?topic=services-nonce-
randomly-generated-token, Nov 2021.

A. Communications, “Signed firmware, secure boot, and security of
private keys,” July 2020.

stacksmashing, “Tot security: Backdooring a
camera by creating a malicious firmware
https://www.youtube.com/watch?v=hV8W40-Mu2ot=612s.
hclxing, “Reverse engineering wyzesense bridge protocol (part ii),”
May 2019.

HclX, “Hclx/wyzesensepy.” https://github.com/HclX/WyzeSensePyreadme.
J. Pohl and A. Noack, “Universal radio hacker: A suite for analyzing
and attacking stateful wireless protocols,” in /2th USENIX Workshop

on Olffensive Technologies (WOOT 18), (Baltimore, MD), USENIX
Association, 2018.

smart
upgrade.”

“Cyclic redundancy check.” https://en.wikipedia.org/wiki/Cyclic_redundancy_check.

“Ghidra software.” https://ghidra-sre.org/.

T. Instruments, “Working with data queues,” 2017.

T. Instruments, “Proprietary rf user’s guide 2.60.0,” 2017.

A. Ltd., “Cmsis system view description.”
https://www.keil.com/pack/doc/CMSIS/SVD/html/index.html: :text=The
CMSIS System View Description,data in device reference manuals,
Jun 2021.

leveldown security, “Svd loader for ghidra 2019.”
https://leveldown.de/blog/svd-loader/, Sep 2019.
leveldown secuirty, “Svd loader ghidra repository.”

https://github.com/leveldown-security/SVD-Loader-Ghidra.
T. Instruments, “Uniflash-quick-start-guide.” https://software-
dl.ti.com/ccs/esd/uniflash/docs/v7g /uni flashquickstartguide.html.

