
CSAW ESC 2021 Final Paper:
Team Rackets for Georgia Tech VIP

Spencer Hua (Student)
Vertically Integrated Projects

Georgia Institute of Technology
spencerhua@gatech.edu

Ammar Ratnani (Student)
Vertically Integrated Projects

Georgia Institute of Technology
aratnani7@gatech.edu

Suhani Madarapu (Student)
Vertically Integrated Projects

Georgia Institute of Technology
smadarapu3@gatech.edu

Zelda Lipschutz (Student)
Vertically Integrated Projects

Georgia Institute of Technology
hlipschutz3@gatech.edu

Allen Stewart (Advisor)
Vertically Integrated Projects

Georgia Institute of Technology
allen.stewart@gtri.gatech.edu

Abstract—The authors participated in CSAW ESC 2021, con-
ducting many side-channel attacks (SCAs) and fault-injection
attacks (FIA) on the presented challenges. This paper serves to
debrief those challenges, debriefing the team’s analyses, though
processes, and solution attempts.

Index Terms—Cybersecurity, Embedded Systems, Hardware
Exploitation, Side-Channel Attacks, Fault-Injection Attacks

I. INTRODUCTION

Hardware exploitation is a powerful tool, allowing attackers
to bypass higher levels of abstraction entirely and compromise
the underlying hardware a program runs on. Two general
techniques of hardware exploitation are side-channel attacks
(SCAs) and fault-injection attacks (FIAs). SCAs observe a
processor’s characteristics, like power draw or cycles taken, to
reverse-engineer the code running inside it. On the other hand,
FIAs manipulate the environment a processor is in to elicit
unintended behavior by introducing hardware faults, typically
in the form of voltage glitching or clock glitching.

The authors of this paper participated in CSAW ESC
2021, a competition which focused on SCAs and FIAs. As
participants, the team created and mounted many such exploits.
This paper explains the authors’ approach to overcoming the
challenges, considering exploit analyses, exploit development,
failed attempts, and final solutions.

II. RECALL

The recall challenge presents a vulnerable string compar-
ison function. In this challenge, the verify function checks
a user-provided input against a string in memory, breaking out
of the loop upon finding a mismatching character.

A. Solution

The team assumed the solution would be ASCII text, as
had been the case for err0r and fizzy. Based on that
assumption, they followed the approach recommended in
ChipWhisperer’s SCA 101 course [1].

To guess the character at index 0 ≤ i < 16, the team
constructed a reference string Sref, where the first i characters

are the correct ones determined in previous rounds, and
where the character at index i is known to be incorrect.
For this purpose, the team used a null byte, assuming the
solution would be printable ASCII. The team finally captured
a reference trace Tref of length Tlen of the target performing
the string comparison on Sref.

With that setup done, the team proceeded with attacking
the i-th character. They brute-forced all possibilities for that
character, capturing the trace T (c) for character c. The correct
character would run verify for longer due to the loop break-
ing one character after the other guesses, creating a different
power trace. Meanwhile, all of the incorrect characters would
have traces very similar to the reference trace. Thus, for each
character c the team computed

E(c) =

Tlen∑
i=1

|T (c)[i]− Tref[i]| ,

and concluded that the character with the highest error E was
the correct one. Using this method, they obtained the flag:

p0w3R1skn0wl3dg3

B. Efficiency
This solution reaches the stated asymptotic efficiency of this

method. For a string of length n over an alphabet Σ, the team
was able to extract it in O(n · |Σ|) time instead of the usual
exponential complexity.

Practically, this method runs quickly, taking about ten sec-
onds to find the target string of length n = 16 over |Σ| = 96.
It was also very reliable, not relying on magic numbers to
process traces. As such, the team often used the solution code
for this challenge to debug issues with the ChipWhisperer
Nano boards.

III. ERR0R

The err0r challenge computes the CRC32 checksum of
a user-provided value twice, then compares the results. To
successfully complete the challenge, the resulting checksums
must be different.

Fig. 1. Power traces obtained from the crc32 functions in the err0r
challenge.

A. Solution

Since the crc32 method was what calculated the CRC32
checksums, the authors decided to use a FIA during one of the
method calls in order to modify the output of one checksum,
successfully completing the challenge. First, the authors ran
a reference implementation in order to capture and save the
expected output of a failed attack. Then, they proceeded to
run a power trace to determine when the crc32 method was
called.

From the graph in Figure 1, the authors surmised that the
first crc32 method was run from 0-200 glitch clock cycles,
and decided to brute-force voltage glitch attacks in the range
from 30-70 glitch cycles in order to ensure a more efficient run
time. For each attack, they checked if no output was returned
(indicating the attack bricked the device), and reprogrammed
the device if necessary. All other output was compared with
the expected result and saved only if the output was different,
showing that the attack succeeded. After the attacks were run,
the only output saved was the flag, which were the ASCII
characters [0x57, 0x49, 0x4e, 0x21] and translate to
“WIN!”.

B. Efficiency

Although the team’s solution was a brute-force attack, it
was fairly efficient as it was run over a relatively short period
of time. It took thirty seconds to complete the attack on the
authors’ systems.

C. Failed Attacks

When the authors first attempted the attack, they didn’t
realize that the glitch clock cycle runs 16 times faster than
the board clock cycle, so the resulting power trace indicated
crc32() was run from 500-3000 glitch clock cycles, a much
broader range that resulted in a less efficient brute-force attack.
Once the authors realized their error, they were able to run
another power trace and greatly narrow their range to the final
version presented above, vastly speeding up result collection.

IV. CRT

The CRT challenge implements the RSA-CRT encryption
algorithm and runs signature generation on a user-provided
input (that is, Md mod N), providing the intermediate values

MP and MQ as output. The challenge also provides a Python
program encrypted with AppArmor that takes these interme-
diate values and provides a full RSA signature as a result.
Finally, the end goal is to identify the RSA private key used
by the board.

A. Bellcore Attack

1) Solution: In 2000, Boneh, DeMillo, and Lipton pre-
sented an attack known as the Bellcore attack on RSA-CRT,
described as follows [2]. Let S be the correct RSA signature
for a given input. Without loss of generality, assume that a
hardware fault corrupts only one of the intermediate outputs
MP , leaving MQ untouched, and call the resulting signature
Ŝ. By the properties of the Chinese Remainder Theorem, it is
known that S = Ŝ (mod q) and S 6= Ŝ (mod p). Then,

gcd(S − Ŝ, N) = q (1)

and the other factor of N can be easily found.
The authors implemented this attack on the ChipWhisperer

Nano by first using the provided gen_signature function
to calculate a known good signature of an input parameter.
Then, the authors conducted voltage glitch attacks from 21000-
35000 glitch clock cycles, checking whether Equation 1 con-
tained a valid factor of N. Once a valid factor was found, the
authors reconstructed the RSA private key, verifying that a
self-constructed signature matched the known good signature.
The recovered private key parameters were:

p = 962476599190059883, q = 1084024262488859977

d = 740931971219309111280757119999234449

2) Efficiency: This attack relies on brute-forcing good
parameters in order to cause a fault in one component of the
resulting signature. However, even given reflashing delays and
other invalid keys, the attack typically succeeded within four
minutes of starting, which represents a tiny fraction of the
amount of time it would typically take to brute-force the key.

B. Failed Attacks

1) Leaking Modular Exponentiation: The team’s original
method relied on exploiting the leakiness of modular expo-
nentiation using the multiply-and-square method, as described
by LiveOverflow. This attack relies on the fact that different
operations are conducted when performing modular exponen-
tiation, depending on the parity of the key bit. For an odd
bit, a multiply and square operation are performed, while
an even bit only has a square operation performed. Thus,
given an array like [multiply, square, multiply,
square, square], the team can deduce that the bottom
3 bits of the key must be 011, since the algorithm operates
from the least significant to the most significant bit.

Because the modular_exp function was broken up into
repeated calls of the modular_mul (modular multiplication)
function, power analysis was only possible on the multiplica-
tion function. After several hours of analysis, the team deduced
that one medium spike was an addition operation, a medium

and large spike was a multiplication operation, and two
large spikes signaled the end of multiplication, the equivalent
of a square operation for exponentiation. Finally, the team
recognized that if a multiply and square operation were both
performed, the underlying additions and multiplications were
repeated. Thus, the plan of attack was as follows:

1) Split up the power trace into additions, multiplications,
and terminating squares.

2) For each square, see whether the underlying add-mult
array could be evenly split into two identical subarrays.
If so, mark key bit as 1; else, mark key bit as 0.

3) Repeat steps 1-2 until the key was recovered.
Given enough time, this approach would have managed
to leak both dp and dq. Unfortunately, this approach was
fundamentally flawed. Given only dp and dq, there is no
known polynomial time algorithm to calculate p and q. While
Jochemsz and May did introduce an attack, it is restricted
to dp, dq < N0.073, which does not hold here. Finally, the
ChipWhisperer Nano has a hardware limitation that limits the
sample collection capabilities to 100,000 samples maximum.
In the team’s testing, the team found that this was only
sufficient to leak the bottom 6 bits of dp before running out
of memory, rendering the attack a failure.

V. FIZZY

The fizzy challenge runs bubble sort on an array and
outputs the final sorted result. However, every time a swap
executes, the board loops for some time doing meaningless
multiplication. Thus, the intent of the challenge is for the team
to measure when the swaps occur, and to identify the original
array from that.

A. Fault Injection

1) Solution: FIAs are known for being able to skip critical
instructions, so the team conjectured the following shortcut to
leak the original array. Instead of conducting power analysis,
they would simply inject a fault as the code was branching
to the subroutine, causing the call instruction to be skipped.
Since no sorting had occurred, the code would then output the
original array. This method ended up working, allowing the
team to recover the flag:

TIMINGSIDECHANNELSARESOCOOL

2) Efficiency: Aside from not being the intended solution,
this method has many drawbacks. First, the attack requires a
pre-requisite brute-force to determine the exact timing for the
fault. As well, the timing is very tight, making the exploit
incredibly inconsistent and thus difficult to find the flag.
Nonetheless, the fact that it worked once provided the team
the flag and made the task of crafting the intended exploit
much easier.

B. Power Analysis

1) Solution: As noted before, the swap function spends
time performing multiplications that do not affect the final
output. They exist merely to provide a distinctive power trace,

Fig. 2. Distinctive power trace of the multiplications within a call to swap
for fizzy. The trace has relatively high peaks at regular intervals.

shown in Figure 2. The team wrote a program to isolate
the trace’s relatively high peaks and find the time difference
between them.

Manually looking at the data, the team came to the following
conclusions. Individual peaks within a call to swap are
separated by at most 22 clock cycles. Gaps of that length
or less can thus safely be dropped from consideration. More
importantly, the swap function has a “cooldown,” and adjacent
calls to it are separated by either 44 or 66 cycles. If some pairs
of elements are not swapped, the delay between the calls will
increase by 17 cycles per pair. Finally, starting a new pass of
bubble sort will further increase the delay by 17 cycles.

These rules can be applied to find how many pairs of
elements were considered and not swapped between two
pairs that were. If c cycles elapsed between two sets of
multiplications, the number of intervening operations can be
computed as either 1

17 (c−66) or 1
17 (c−44), whichever comes

out to a whole number. Each operation is either a pair that was
not swapped or the code moving back to the start of the array
for another pass. These cases can be differentiated by keeping
track of where in the array the swaps are happening.

Ultimately, these rules are used to construct the sequence of
swaps σ1, · · · , σk applied to the original array A0. The team
was given the final array

A = σk · · ·σ1 ·A0,

so they could reconstruct A0 as

A0 = σ−1
1 · · ·σ

−1
k ·A

= σ1 · · ·σk ·A,

and obtain the flag:

TIMINGSIDECHANNELSARESOCOOL

2) Efficiency: The method presented here is as efficient as
it can reasonably be. It runs in linear time on the number
of swaps, and thus quadratic time on the size of the array.
Practically, the analysis runs fast, and the time it takes is
dwarfed by the time taken just getting a trace.

It is also dwarfed by the amount of time it took to create
the algorithm itself. The rules given above are complicated
and surprisingly tricky to implement in code. For example,

Fig. 3. Distinctive power trace of the multiplications within a call for
casino.

the rules only give information about what happens between
swaps, making it easy to run into fencepost errors. In fact,
the team originally didn’t even implement their approach in
code, opting to do everything manually. It took much longer,
but it was enough to verify the approach’s correctness before
proceeding further.

VI. CASINO

The challenge casino provides an array with the correct
values but asks the authors to find the correct order. For each
element in the array, it performs a number of multiplication
equations equal to the value of the element of the array itself.
The authors learned from fizzy that repeated multiplication
has a distinct power trace, so if the authors could count the
number of power spikes for each element in the array, they
could determine its correct order.

A. Solution

The authors first ran a power trace on the challenge to check
if the resulting graph supported their theory that the solution
could be solved by counting the power spikes associated with
each element of the array. As the graph supported the authors’
theory, the authors were able to determine that the graph did
seem to show regular spikes of power that corresponded to the
multiplication operations. They saw that the spikes of power
associated with multiplication were consistently over 0.4 volts.
The authors knew from fizzy that the distance between
power spikes associated with multiplication operations occur-
ring in a loop were about 21 processor glitch cycles apart, so
a longer gap between the spikes indicated that the process had
restarted on the next element of the array. They then used a
run-length encoding algorithm to count the number of spikes
associated with each element in the array. If the spikes were
roughly 21 glitch cycles apart, they were considered multiples
of the same element. A longer gap signalled the start of the
next element to be counted. In order to account for the fence
post principle, 1 needed to be added the each count, which was
implemented by rounding the final count of power spikes to

the nearest 10. When put together, this data became an array
with its elements in the correct order, revealing the order as:

120 90 80 60 110 10 50 20

30 40 150 140 70 100 130

B. Efficiency

The presented solution is fairly efficient given that it simply
iterates through the power trace while counting. The solution
took only a few seconds to run on the author’s computers. If L
represented the magnitude of the largest element in the array
and n represented the length of the array, then the solution
could be described to have a time complexity of O(L ∗ n). It
would be difficult to make this solution more efficient as the
only way to get an accurate count of the power spikes present
is to iterate through the entire power trace.

VII. FIASCO

The FIAsco challenge contains an implementation of AES,
and the team was challenged to find the key. Typically, the
techniques of correlation power analysis (CPA) or differential
power analysis (DPA) are well suited to attacking these types
of problems.

A. Solution

While the team could have implemented the logic for
implementing a CPA attack themselves, they realized that the
challenge binary originated from a ChipWhisperer tutorial [3].
As such, the team simply used the ChipWhisperer’s built-in
library to perform CPA, captured some traces to feed into it,
and obtained the flag:

0x 2b 7e 15 16 28 ae d2 a6

ab f7 15 88 09 cf 4f 3c

The team then verified that they had the correct key by
encrypting some data with it and ensuring the self-generated
output was equal to the board’s output.

B. Efficiency

Given most of the work is done by the ChipWhisperer
Analyzer library, the team does not have many parameters
to optimize. The main variable they control is the number
of traces used Ntraces. Given the correlation step is at least
linear in Ntraces, it is best to capture as few traces as possible.
The team was able to get the correct answer with as low as
Ntraces = 50. Lower numbers were not tested.

VIII. SEARCH

The search challenge begins with an array of 257 integers,
from 0 to 255, followed by a terminating 0. Then, the program
removes 6 numbers from the array, leaving the team to figure
out which numbers were removed.

Fig. 4. Power trace of a call to binarySearch with an input of 0 (which
was not removed) for search. The trace has seven distinct peaks before a
“big one”.

Fig. 5. Power trace of a call to binarySearch with an input of 59 (which
was removed) for search. The trace has eight distinct peaks before a “big
one”.

A. Solution

The worst-case runtime of a binary search function in a
given array is O(log2 n), where n represents the array’s length.
Thus, if a number does not exist in the array, the search
function should run log2(251) ≈ 8 times before returning.
These missing numbers can be identified by counting the
iterations of the search value in a power trace, then identifying
which numbers contain 8 peaks.

First, the team created a power trace for the
binarySearch function with an input of 0, as seen
in Figure 4. Upon looking at the traces, the team noticed that
after several iterations, there is a large spike (typically larger
than 0.35) in the power trace, which the team colloquially
referred to as a “big one”, which they assumed represented
the end of the search function.

Initially, the team’s scope range was between 0 and 250
clock cycles, as the initial large spikes occurred around time
250. However, the team noticed that 59’s large spike’s time
would not print. As a result, the search range was extended to
0-500 clock cycles, resulting in enough data capture to identify
which numbers had their large spike after 300 clock cycles,
resulting in a flag of:

0x 27 5b 76 98 cf e8

B. Efficiency

The script checks 257 power traces with a time complexity
of O(n) where n is the length of the array. While this is a
good runtime, the program could have been further optimized
by checking for the highest non-removed number.

If a number before the middle value (2572 in the challenge)
was removed, then it would take more than one iteration
to find the middle value, indicating that the array has been
downshifted. To find the first removed integer, an algorithm
could disregard the upper half of this list, checking if the
middle values takes:

• one iteration, in which case no value before the middle
has been removed, allowing the team to disregard that
section,

• longer than one but less than log2(n) iterations, in which
case a value higher in the list has been removed,

• or log2(n) iterations, signifying that the middle number
has been removed.

In total, the time complexity of the described algorithm would
be O(k log(n)) where k is the number of integers removed
and n is the length of the array, a significant time savings
over O(n) when k is small compared to n.

IX. CALC

In the calc challenge, the authors were tasked with at-
tempting to reconstruct the original array of numbers in a
calculator program using leaky operations.

A. Solution

The authors began their attack on the least significant bit
of each integer element in the array. First, the mult() method
was run 31 times with a scalar of 2 in order to push the last bit
to the first position. Next, the divisor() method was run 31
times with a divisor of 2 in order to shift the least significant
bit back to the last position while ensuring that every bit in the
integer was the same as the least significant bit. From here,
the authors could run the dividend() method on the altered
integer.

If all of the bits in the integer were zero (indicating the least
significant bit was 0), the method would not execute and would
have a different power trace than if it did execute (indicating
the least significant bit was 1). In order to ensure this method
worked on subsequent bits, the authors would first left shift
the current bit to the last position before beginning the process
to isolate the bit. This allowed the authors to reconstruct the
original array in reverse order bit by bit, resulting in the
following output:

0x 67 d3 3a cd b4 1e

9c bf e7 05 21 77

B. Efficiency

If n represents the length of the array and each element is b
bits, then the efficiency of this solution is roughly O(n ∗ b2).
The actual process of isolating bits is a fixed number of

Fig. 6. Distinctive power trace of homebrew’s stream cipher encrypting
random data. The trace has only two styles of peaks: wide and skinny.

operations. Although later bits require an increasing number
of left shifts to put them in the last position before they
can actually be isolated, since the maximum number of these
increased operations will always be less than or equal to
a constant, they can be disregarded in consideration of the
overall efficiency. On the authors’ systems, the solution took
about a minute to run per element in the array.

X. HOMEBREW

The homebrew challenge is a custom stream cipher that
runs different code paths depending on the parity of a specific
key bit, with the challenge being to find the private key.

A. Solution

First, the team took a power trace of the program (see Figure
6) and noticed that there were only two types of peaks: wide
and skinny. They assumed the wide peaks were the “else”
implementations, indicating a 0 for the private key’s bit, while
skinny peaks implied a 1. This approach led to 128 distinct
key bits, validating the team’s approach as the key was 128
bits long. However, this process needed to be automated.

The team split the power trace into intervals, then noticed
that the wide peaks were low time values grouped in two or
more (for example, [600, 660, 600]), and separated with
a time value greater than 15. Meanwhile, the skinny peaks
were only zero or one spikes long. The team implemented
code that would scan through the power trace and differentiate
between wide and skinny peaks, substituting a 0 or 1 for the
private key bit as desired. Finally, the team verified their output
by encrypting the data with their generated key and comparing
it to the board’s output.

At first, the team had actually inverted their assumption
on the mapping between wide and skinny peaks and bit
parity. After adjusting the program such that a wide peak
corresponded to a 1 and vice versa, the team’s verification
passed, resulting in a key of:

0x 80 88 25 dc ad 52 c9 71

01 6f f2 64 7f 26 95 a8

B. Efficiency
As the script needs to scan through the entire power trace,

the time complexity is O(n) time, where n is the length of
the power trace.

XI. NOTSOACCESSIBLE

The NotSoAccessible challenge implements the SI-
MON cipher, originally developed by the National Security
Agency in 2013 [4]. The challenge provided access to read
or inject a fault in the 26th round of the cipher, and asks the
authors to identify the private key given a leaked half.

A. Proposed Attack
After some research, the team discovered an algebraic

differential fault attack proposed by Le, Yeo, and Khoo [5].
In the paper, Le, Yeo, and Khoo describe an attack that only
requires a single fault injection in the T − 6th round, where
T represents the total number of rounds. Algorithm 4, the
proposed attack, can be summarized as follows:

1) Pick a plaintext P and obtain the encrypted ciphertext
C.

2) Construct a set A, which consists of several subsets:
• L, the set of linear equations to solve for the key

schedule,
• D, the set of differential faults that arise from

computing δjl (i) for key bit i and the (j, l)th entry
in the differential fault table,

• S, the original set of SIMON cipher equations.
3) Since the first half of the private key is known, substitute

these values into the set A and pre-solve as many
equations as possible.

4) Feed the remaining equations in A into a modern SAT
solver, returning the key variables found.

Since the challenges in set 3 were released rather late, the
authors attempted to conduct some rudimentary fault injection,
but were unable to re-construct the set A as described by Le,
Yeo, and Khoo in time [5]. However, the authors have full
confidence that this attack is the correct attack, and given more
time would lead to a successful leak of the private key.

B. Efficiency
Because the team is given 64 bits of the 128-bit private

key, the authors suspect that the runtime to solve the set A
would be faster than Le, Yeo, and Khoo’s original findings,
where fixing 22 key bits led to a successful solve in only 47.4
seconds. Given even more key bits, the runtime would likely
be much smaller.

XII. CONCLUSION

In this paper, the team details their approach to analyzing
and solving the challenges presented to them as part of the
CSAW ESC 2021 competition. It covers their initial impres-
sions about the code, as well as any patterns they could
find in power traces. It also traces their attempts at exploit
development, considering both failures and successes. Finally,
the paper speculates on how the team’s attacks can be made
to run more efficiently and more robustly in the future.

REFERENCES

[1] ChipWhisperer, “SCA101: Part 2, Topic 1, Lab B:
Power analysis for password bypass.” [Online]. Available:
https://chipwhisperer.readthedocs.io/en/latest/tutorials/courses sca101
soln lab%202 1b%20-cwnano-cwnano.html#tutorial-courses-sca101-

soln-lab-2-1b-cwnano-cwnano
[2] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of

eliminating errors in cryptographic computations,” J. Cryptology, vol. 14,
pp. 101–119, 2001.

[3] ChipWhisperer, “SCA101: Part 4, Topic 3: ChipWhisperer analyzer CPA
attack.” [Online]. Available: https://github.com/newaetech/chipwhisperer-
jupyter/blob/8b4d4cfa7cc4851488bb479583fb5a0dec3a5ab3/courses
/sca101/Lab%204 3%20-%20ChipWhisperer%20Analyzer%20CPA
%20Attack%20(MAIN).ipynb

[4] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, “The simon and speck lightweight block ciphers,” in
Proceedings of the 52nd Annual Design Automation Conference, ser.
DAC ’15. New York, NY, USA: Association for Computing Machinery,
2015. [Online]. Available: https://doi.org/10.1145/2744769.2747946

[5] D.-P. Le, S. L. Yeo, and K. Khoo, “Algebraic differential fault analysis on
simon block cipher,” Cryptology ePrint Archive, Report 2021/436, 2021,
https://ia.cr/2021/436.

