
CSAW ESC Team B Spring 2021 Report
Spencer Hua (Student)

Vertically Integrated Projects
Georgia Institute of Technology

spencerhua@gatech.edu

Taleb Hirani (Student)
Vertically Integrated Projects

Georgia Institute of Technology
thirani7@gatech.edu

Siddhant Singh (Student)
Vertically Integrated Projects

Georgia Institute of Technology
ssingh484@gatech.edu

John Moxley (Student)
Vertically Integrated Projects

Georgia Institute of Technology
jmoxley@gatech.edu

Allen Stewart (Advisor)
Vertically Integrated Projects

Georgia Institute of Technology
allen.stewart@gtri.gatech.edu

Abstract—This report details the efforts of the Georgia Tech’s
Embedded System Cybersecurity VIP team to create a Ghidra
script for use in the static analysis of binaries for various
architecture. This tool uses Ghidra’s plugin system and external
engines to symbolically solve for constraints and reach a solution
state in the loaded binary. The team demonstrates this tool and
the process of creating and using it.

I. INTRODUCTION

Throughout this paper, the Georgia Tech Embedded System
Cybersecurity VIP team details the motivations and specifics
in creating a Ghidra [1] script which can be leveraged to
more effectively analyze binaries. There are several different
engines which are used to drive the tool. Each of these can
be used to perform a different analysis task. For example, one
engine leverages the use of Sice Squad [2]’s RISC-V symbolic
execution project to allow a researcher to perform symbolic
analysis on RISC-V binaries within Ghidra. Other engines
are incorporated as well, such as the Z3 Theorem Prover [3].
Furthermore, the usage of this tool is intended to be intuitive
through the use of Ghidra’s GUI elements. Ultimately, this
tool makes binary analysis a much easier research task.

II. INSPIRATION

The inspiration to develop a Ghidra [1] script, as well as
write documentation to help make Ghidra plugin development
more accessible, came from two open source projects. Ghidra-
Emu-Fun is an open source Ghidra P-code emulation front-end
project developed by the students in the TRX CTF team of the
Sapienza University of Rome. This project is a Ghidra plugin,
developed in Python, that serves as an accessorized front-end
to the P-code emulation feature provided by the Ghidra RE
framework for the ARM architecture. This front-end supports
common debugging commands as well as enabling support for
function hooking, wildcard bytes for function parameters as
well as automated fuzzing via batch commands. By reviewing
the code written by the TRX team, the team was able to further
its understanding of Ghidra P-code lifting and associated
plugin development practices. Another tool that served as
inspiration and as a base for the team’s tool development
was the RISC-V Symbolic Execution engine developed by the

Sice Squad CTF team. This tool was developed as a custom
tool to solve the CSAW ESC 2020 challenge. It consists of a
simply disassembly and lifting script combined with a small
symbolic execution engine, and was put together to aid in
reverse engineering RISC-V 32-bit binaries. The engine is able
to solve for basic symbolic constaints with the help of the
Z3 Theorem Prover, and was instrumental in being succinct
enough to be easily slotted into different frameworks.

III. GHIDRA SCRIPTS VS. EXTENSIONS

In order to effectively extend Ghidra’s functionalities, it is
important to understand the proper way to do so. Ghidra offers
a variety of interfaces in which to write extensions. Being an
open source project [1], it is possible to change any aspect
of Ghidra, even the core functionality. However, the Scripting
Manager and Extensions provide far more convenient ways to
modify small aspects of Ghidra’s behavior without needing to
delve into the core code.

Ghidra scripts provide this easy way to modify Ghidra’s
behavior. They can be written in either Python or Java, and the
Script Manager includes a built-in GUI editor to manipulate
and run them, as well as a variety of example scripts in both
languages, which serve as good starting points for new script
developers. As seen in Figure 1, scripts in the Script Manager
are organized into categories on the left, while the editor can
be seen on the right.

Ghidra extensions (also known as plugins or modules), on
the other hand, are Java programs that are intended for more
heavy-weight functionality and changes to Ghidra. Extensions
are run alongside Ghidra’s main instance, and can heavily
modify Ghidra itself, not being limited to working with
Ghidra’s current program. It is recommended that Ghidra ex-
tensions be developed using Eclipse [4] with the recommended
development packages installed for easier use [5].

It is important to note that Ghidra’s full program API is
accessible for scripting programs. Thus, the team chose to
implement the tool as a Ghidra script written in Python, as
there are no limitations with this method. Furthermore, several
projects that the team intends on interfacing with, such as the
RISC-V Symbolic Execution Engine, already exist as Python



Fig. 1. The Ghidra Script Manager

projects. Thus, creating a Python script simplifies both the
implementation of the team’s code and the interfacing with
other engines, making for a smooth and fast development
experience.

IV. GHIDRA-BRIDGE

One issue the team encountered is that Ghidra provides
Python support through an internal Jython interpreter, which
has no access to external site packages provided by Python.
After some experimentation, the team discovered a solution in
the form of Ghidra-Bridge [6].

Ghidra-Bridge is a free and open source tool based on the
JFX-Bridge project, allowing a user to access the Ghidra APIs
from external Python installations via Remote Procedure Calls
(RPC). Thus, a Python3 script can be created with all required
modules pre-installed, which can simultaneously access the
Ghidra API through Remote Procdure Calls to the Ghidra-
Bridge instance running on Ghidra’s Jython interpreter. Using
Ghidra-Bridge also allows the team to make use of a virtual
environment, which is a boon for managing Python projects
that require multiple, different dependencies, some of which
may conflict with other projects. For the tool,the team used
a powerful internal feature of Ghidra-Bridge’s RPC server to
enable a script run from within Ghidra to spawn an external
Python script, creating a usage experience that is perfectly
seamless to the end user.

V. GHIDRA API CALLS

For the purpose of tool development, the team made use of
the flattened internal Ghidra APIs to easily access important
scripting features. The FlatProgramAPI is a flattened version
of the Ghidra main Program API that can be used for a variety
of tasks, including reading information about and manipulating
the currently loaded program, and prompting the user for input.
Similarly, the FlatDecompilerAPI is a flattened version of the
Ghidra Decompiler API that can be used to run the internal
Ghidra decompiler and export the reconstructed program.

Primarily, a Ghidra script can be made extremely useful by
taking user input so that each time the script is run, it can
run with different values and configurations. As such, Ghidra

provides quite a few different ways of requesting information
or choices from the user via API calls through the FlatPro-
gramAPI. The GhidraScript subclass of the FlatProgramAPI
provides many useful methods beginning with the word ”ask”
that can be used to get user input via Ghidra’s input GUI
elements. The team uses these functions and more to conduct
custom analysis of various binaries, as well as collect user
input to aid in symbolic engine execution.

VI. EXTERNAL ENGINES

The tool uses a modular design that creates easily extensible
code that can interface with other open source projects. As
such, the tool is not only restricted to the Ghidra API, but can
delegate tasks to other reverse engineering engines and frame-
works as needed for better coverage and performance. Below,
the team notes some engines that are already implemented into
the tool, for ease of use.

A. RISC-V Symbolic Execution

The first implemented engine is the RISC-V Symbolic
Execution Engine [2], created by Sice Squad, and is one of the
main inspirations for the team’s tool. It allows an end-user to
symbolically execute RISC-V binaries by building on existing
work from the Binary Ninja team and implementing internal
support through Z3 [3] code.

The tool automates the initialization of Sice Squad’s engine,
by automatically inputting the code base address, file base
address, and other parameters of the binary directly from
Ghidra’s FlatProgramAPI. The end-user is able to select a
group of address to avoid or target, using the GUI to easily
search for addresses from within Ghidra. Finally, the tool
automatically runs Sice Squad’s engine, which symbolically
executes the program, and displays the results that were found.

B. Z3 Theorem Prover

The second implemented engine is the Z3 Theorem Prover
[3], a cutting-edge SMT solver that can efficiently solve for
arbitrary constraints. Users may select constraints that are
intractable to solve by hand or difficult to comprehend and
pass these constraints to Z3 for analysis.

As the team will discuss in the next section, the tool
attempts to automatically identify constraints that may be
placed upon an input to a program. If found, these constraints
can be passed to Z3, which solves constraint-based problems
orders of magnitude faster than typical symbolic execution
engines can. Once Z3 is finished solving, the tool outputs
any results that have been found, including a solution to the
constraints if it exists.

VII. CUSTOM ANALYSIS

In addition to acting a shim to external engines, the tool was
intended as a general aid to reverse engineering binaries. As
such, the tool attempts to perform rudimentary analysis on a
binary’s metadata to identify points of interest for the end user.
One implemented is the analysis of the Levenshtein distance
between the binary’s exported function names, colloquially



known as “fuzzy string matching”. Since many generated
functions and other functions of interest typically have similar
names (i.e. “check123123” and “check342342”), the tool seeks
out the functions with low Levenshtein distance between their
function names and return them to the user. This is most
efficiently done with the use of a BK-Tree, which is a data
structure that is most commonly combined with Levenshtein
distances to aid in spell-checking. Thus, it is possible to
identify interesting clumps of functions that may contain clues
on how to best reach the solution state.

The team then expands on these interesting functions by
conducting some automated analysis using custom regular
expressions that attempt to parse all elements of an if-else
function. As a basic control flow function, analyzing condi-
tional statements is the main goal of reverse engineering, as
they provide the most information on how a program behaves.
The implemented custom regular expressions use Ghidra’s
internal FlatDecompilerAPI to retrieve a C representation of
the binary, then automatically extract the constraints and feed
them into an awaiting Z3 solver [3] instance. Z3, being a state-
of-the-art SMT solver, attempts to find a solution for these
constraints, and does so in a fraction of the time a typical
symbolic execution engine takes, taking only 0.3 seconds
instead of 10 minutes 27 seconds, a final speedup of 2090%.

VIII. RESULTS AND DISCUSSION

This tool has been tested on a variety of challenge binaries
in order to confirm its functionality. These tests focus on
architectures that are targeted by the tool, specifically RISC-V
and x86.

A. CSAW ESC 2020: Qualification

The RISC-V binary qual-esc2020.elf [7] served as
the CSAW ESC 2020 qualification challenge for finals. It con-
sists of three challenge functions, all of which were efficiently
solved using the tool. See Table I. Finally, the team further
verified the tool’s solutions by running them on the provided
SiFive hardware.

TABLE I
ADDRESSES FOR FINDING SOLUTIONS TO THE CSAW ESC 2020

QUALIFICATION BINARY

Challenge Start Address Find Address Avoid Address

1 0x20400232 0x20400320 0x204002bc
2 0x2040032e 0x204003b2 0x20400390
3 0x2040052e 0x204005ba 0x20400598

B. CSAW ESC 2020: Parthenon

As expected, the tool’s internal symbolic execution engine
is unable to solve every challenge problem. In certain cases
where many paths exist, symbolic execution engines will en-
counter a phenomenon known as “path explosion”, where the
number of possible paths increases exponentially, rendering
symbolic execution computationally infeasible.

The Parthenon challenge (parthenon.elf [8]) is an
example of a RISC-V binary in which path explosion occurs.

In the Parthenon binary, the input is hashes using a custom
cipher before being checked against user input. The use of
this custom hash function results in path explosion when run
through the tool, which point to other analysis methods being
required to solve this binary. Indeed, the team notes that no
existing solutions for Parthenon utilize symbolic execution,
with many instead opting for manual reversing.

C. DiceCTF 2021: Babymix

The babymix [9] x86 binary from DiceCTF 2021 serves
as a demonstration of the tool’s custom analysis and reversing
capabilities. The binary implements many input-checker func-
tions that verify whether a certain portion of the user’s input
follow a particular constraint.

The tool uses the techniques detailed in previous sections
to parse and analyze the functions of interest, which all follow
the format of check######, where # represents a numeric
digit. Thus, the tool’s implementation of Levenshtein distance
can easily identify and parse these functions, then input the
extracted constraints into Z3, as seen in Figure 2.

Fig. 2. Example output from Babymix

Since the babymix binary is more rudimentary compared
to other reverse engineering exercises, the tool performs spec-
tacularly, quickly outputting a solution to the entire challenge.

IX. FUTURE WORK

Due to the extensible design of the tool, future directions for
the tool include the inclusion of analysis of binaries compiled
for the ARM architecture, which would be a valuable asset to
the existing x86 and RISC-V toolbox due to the popularity of
ARM CPUs in modern mobile and embedded environments.
Additionally, the inclusion of popular symbolic execution
engines like Angr [10] would open up symbolic execution
past the RISC-V architecture to more common architectures
like x86 and MIPS.

Finally, user interface improvements would greatly improve
the accessibility of the tool, opening it to a wider audience of
security researchers and enthusiasts.

X. CONCLUSION

In creating this tool, the team intends to make binary
analysis and reverse engineering a much easier task, especially
for binaries with vulnerable execution paths, such as ones used



in Capture-the-Flag styled reverse engineering competitions.
As such, the team implemented a custom script based upon
the Ghidra Reverse Engineering framework that offers the
following advantages over existing tools:

• Free and Open Source codebase, with supporting docu-
mentation to inform the creation of other similar tools

• Extensible framework to allow for future expansions
based on various other analysis, fuzzing or testing engines

• Levenshtein-distance-based analysis to identify poten-
tially interesting functions

• Regex-based constraint identification, parsing, and solv-
ing via Z3 to reverse engineer passwords for x86 binaries

• Symbolic execution based analysis and constraint solving
via Z3 to reverse engineer passwords for RISC-V binaries

The team hopes that the creation of this tool will pave
the way for further automated analysis of binaries, as well
as greater ease-of-use between all of the major reverse engi-
neering engines.

REFERENCES

[1] “Ghidra,” Available at https://github.com/NationalSecurityAgency/ghidra
[Accessed 22 February 2021].

[2] “Risc-v symbolic execution,” Available at
https://github.com/sicesquad/riscv-sym [Accessed 22 February 2021].

[3] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 337–340.

[4] “Ghidra developer’s guide,” Available at
https://github.com/NationalSecurityAgency/ghidra/blob/master/DevGuide.md
[Accessed 22 February 2021].

[5] “Ghidra installation guide,” Available at https://ghidra-
sre.org/InstallationGuide.html [Accessed 19 February 2021].

[6] “Ghidra bridge,” Available at https://github.com/justfoxing/ghidra bridge
[Accessed 14 April 2021].

[7] “Csaw embedded security challenge 2020 qualification binary,”
Available at https://github.gatech.edu/Embedded-System-Cyber-
Security-VIP/ESCS-Hardware/blob/master/CSAW/csaw esc 2020/qual-
esc2020.elf [Accessed 14 April 2021].

[8] “Csaw embedded security challenge 2020
parthenon challenge binary,” Available at
https://github.gatech.edu/Embedded-System-Cyber-Security-VIP/ESCS-
Hardware/blob/master/CSAW/csaw esc 2020/challenges/setA/parthenon.elf
[Accessed 14 April 2021].

[9] mmaekr, “Dicectf 2021 babymix challenge binary,” Available at
https://github.gatech.edu/Embedded-System-Cyber-Security-VIP/ESCS-
Hardware/tree/master/CSAW/tools/babymix [Accessed 14 April 2021].

[10] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“Sok: (state of) the art of war: Offensive techniques in binary analysis,”
2016.


